Applied Catalysis B: Environmental, Vol.97, No.3-4, 347-353, 2010
Oxygen reduction on Pd3Pt1 bimetallic nanoparticles highly loaded on different carbon supports
The development of new cost-effective cathode catalysts with high methanol tolerance and at a high catalyst loading is highly desirable for the direct methanol fuel cell. The Pd3Pt1 bimetallic alloy nanoparticles highly loaded on different carbon supports, including Vulcan XC-72R carbon, single and multi-walled carbon nanotubes (SWCNTs/MWCNTs) and ordered mesoporous carbon (OMC), have been prepared by a modified polyol reduction route. The activities of the catalysts for the oxygen reduction reaction (ORR) have been studied based on the rotating disk and ring-disk electrode (RDE/RRDE) techniques in pure and methanol-containing electrolytes. X-ray diffraction indicates that all the Pd3Pt1/C nanoparticles evidence a single-phase fcc disordered structure. The mean particle size of Pd3Pt1 alloy nanoparticles on different supports is ca. 4-5 nm even at a metal loading of 50 wt%. Among various carbons supported catalysts, the highest ORR activity, found on the OMC-supported Pd3Pt1 catalyst, even surpasses that on the commercial Pt/C catalyst. Kinetic analysis reveals that the ORR on the Pd3Pt1/OMC catalyst predominantly undergoes a four-electron process, leading to water formation. Furthermore, the Pd3Pt1/OMC catalyst exhibited a higher methanol tolerance during the ORR than the commercial Pt/C catalyst: ensuring a higher ORR performance while diminishing Pt utilization. (C) 2010 Elsevier B.V. All rights reserved.
Keywords:Pd-Pt alloy;Carbon nanotube;Ordered mesoporous carbon;Electrocatalysis;Oxygen reduction reaction;Methanol tolerance