Applied Microbiology and Biotechnology, Vol.87, No.2, 509-516, 2010
A novel nitric oxide producing probiotic patch and its antimicrobial efficacy: preparation and in vitro analysis
Microbial and fungal infections are a significant consideration in the etiology of all wounds. Numerous antimicrobial and antifungal formulations have been developed with varying degrees of efficacy and stability. Here, we report a nitric oxide producing probiotic adhesive patch device and investigate its antimicrobial and antifungal efficacy in vitro. This probiotic patch utilizes the metabolic activity of immobilized lactic acid bacteria, glucose, and nitrite salts for the production of gaseous nitric oxide (gNO), which is used as an antimicrobial agent against bacterial and fungal pathogens. Results show that application of gNO-producing probiotic patches to cultures of E. coli, S. aureus, P. aeruginosa, MRSA, T. mentagrophytes, and T. rubrum resulted in complete cell death at between 4 and 8 h, and application to cultures of A. baumannii, resulted in fewer than ten colonies detected per milliliter at 6 h. These results demonstrate that a gNO-producing probiotic patch device containing bacteria, glucose, and nitrite salts can produce sufficient levels of gNO over a therapeutically relevant duration to kill common bacterial and fungal wound pathogens in humans.
Keywords:Nitric oxide;Antimicrobial;Bacteria;Infection;Wound healing;Diabetic ulcer;Venous stasis ulcer;Artificial cell;Microcapsule;Patch;Dressing