화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.87, No.4, 1427-1435, 2010
Chain transfer reaction catalyzed by various polyhydroxyalkanoate synthases with poly(ethylene glycol) as an exogenous chain transfer agent
Polyhydroxyalkanoate (PHA) synthases catalyze chain transfer (CT) reaction after polymerization reaction of PHA by transferring PHA chain from PHA synthase to a CT agent, resulting in covalent bonding of CT agent to PHA chain at the carboxyl end. Previous studies have shown that poly(ethylene glycol) (PEG) is an effective exogenous CT agent. This study aimed to compare the effects of PEG on CT reaction during poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis by using six PHA synthases in Escherichia coli JM109. The synthesized P(3HB) polymers were characterized in terms of molecular weight and end-group structure. Supplementation of PEG to the culture medium reduced P(3HB) molecular weights by up to 96% due to PEG-induced CT reaction. The P(3HB) polymers were subjected to H-1 NMR analysis to confirm the formation of a covalent bond between PEG and P(3HB) chain at the carboxyl end. This study revealed the reactivity of PHA synthases to PEG with respect to CT reaction in E. coli.