화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.87, No.6, 2047-2058, 2010
Selective expression of the soluble product fraction in Escherichia coli cultures employed in recombinant protein production processes
Recombinant proteins produced in Escherichia coli hosts may appear within the cells' cytoplasm in form of insoluble inclusion bodies (IB's) and/or as dissolved functional protein molecules. If no efficient refolding procedure is available, one is interested in obtaining as much product as possible in its soluble form. Here, we present a process engineering approach to maximizing the soluble target protein fraction. For that purpose, a dynamic process model was developed. Its essential kinetic component, the specific soluble product formation rate, if represented as a function of the specific growth rate and the culture temperature, depicts a clear maximum. Based on the dynamic model, optimal specific growth rate and temperature profiles for the fed-batch fermentation were determined. In the course of the study reported, the mass of desired soluble protein was increased by about 25%. At the same time, the formation of inclusion bodies was essentially avoided. As the optimal cultivation procedure is rather susceptible to distortions, control measures are necessary to guarantee that the real process can be kept on its desired path. This was possible with robust closed loop control. Experimental process validation revealed that, in this way, high dissolved product fractions could be obtained at an excellent batch-to-batch reproducibility.