화학공학소재연구정보센터
Applied Surface Science, Vol.256, No.7, 1972-1975, 2010
Thermal stability of nanocrystalline layers fabricated by surface nanocrystallization
A nanocrystalline layer with ultrafine grains (about 30-40 nm) on the surface of 7050 aluminum alloy was fabricated by a new technique called High Pressure Shot Peening (HPSP) which is the combination of common Shot Peening equipment with a pressurizing vessel. Relationship between hot flow and temperature was observed by Differential Scanning Calorimetry (DSC) and the activation energy, calculated by Kisssinger equation, of the as-treated sample increased 26.6 kJ/mol when it is compared with the as-reserved sample. The Bragg peaks of the as-prepared samples, respectively treated with various annealing treatments were characterized by XRD and the microhardness distribution along the depth from the treated surface were measured at the same time, which indicated that the broadening of Bragg peaks decreased with the increasing of anneal temperature; the grain size, calculated by Scherrer-Wilson equation, increased obviously during 180-220 degrees C, accordingly, the microhardness obviously decreased. According to the results of DSC, XRD and microhardness, it is reasonable to deduce that the temperature range of thermal stability for aluminum alloy nanocrystalline layer is lower than 200 degrees C. (C) 2009 Elsevier B.V. All rights reserved.