화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.36, No.3, 821-829, 1997
Gas Separation Using Membranes .1. Optimization of the Separation Process Using New Cost Parameters
This is the first in a series of papers presenting new concepts for the development of membranes for gas separation. In this paper two new cost parameters, which are useful for costing and optimization of membrane gas separation systems, are described. The new parameters, cost permeability and effective selectivity, can be used to show the direction to be taken in membrane research and development. The new parameters are shown to predict accurately the cost of membrane separation plant by correlating bids from membrane plant suppliers using the new parameters with cross-flow design equations. The parameters are used to optimize the membrane gas separation of hydrogen and carbon monoxide for two commercially available membrane systems in a process to manufacture acetic acid. The membrane separation is compared with the currently used method, cryogenic flash distillation. Economic evaluation methods are developed to compare different separation methods so that the process as a whole can be optimized. The evaluation shows that, for membrane gas separation, it is important to find the optimum degree of separation; when membrane separation is evaluated at the separation specification for the established cryogenic method, membranes are not competitive; however, when the process is optimized for membrane separation, the cost of separation reduces to less than 60% of the cryogenic separation.