Applied Surface Science, Vol.256, No.14, 4612-4620, 2010
Mechanics and energy analysis on molten pool spreading during laser solid forming
This paper studies the issue that the molten pool width gradually increases under some conditions during laser solid forming (LSF), which can decrease the shape and dimension accuracy of LSFed component to a large extent. By using the statics analysis method and calculating the interfacial tensions at the solid-liquid-gas triple point of molten pool, the proposed two-dimensional (2D) cross-sectional model of single deposition layer illustrates qualitatively that the deposition width would increase with the increasing pool temperature at a certain powder feeding rate, which we called the pool spread behavior here. Meanwhile, by calculating the maximum equilibrium contact angle for keeping solid-liquid-gas triple point balance, it is found that the molten pool is solidified during non-equilibrium state. Furthermore, in order to control the pool temperature and decrease pool spread amount, the optimal match of pool energy and mass inputs is determined for obtaining an optimum balance between the energy input and deposition efficiencies. (C) 2010 Elsevier B. V. All rights reserved.