Applied Surface Science, Vol.256, No.17, 5463-5469, 2010
Changes in wetting and energetic properties of glass caused by deposition of different lipid layers
An investigation of wetting and energetic properties of different lipid layers deposited on the glass surface was carried out by contact angles measurements and determination of the apparent surface free energy. The topography of the lipid layers was also determined with the help of atomic force microscopy (AFM). Two synthetic phospholipids were chosen for these studies, having the same phosphatidylcholine headgroup bound to the apolar part composed either by two saturated chains (1,2-dipalmitoyl-sn-glycero-3-phospshocholine - DPPC) or two unsaturated chains (1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPC) and one lipid (1,2,3-trihexadecanoyl-sn-glycerol - tripalmitoylglycerol - TPG). The lipid layers, from the 1st to the 5th statistical monolayer, were deposited on the glass surface from chloroform solutions by spreading. The apparent surface free energy of the deposited layers was determined by contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide), and then two concepts of interfacial interactions were applied. In the contact angle hysteresis approach (CAH) the apparent total surface free energy was calculated from the advancing and receding contact angles and surface tension of probe liquids. In the Lifshitz-van der Waals/acid-base approach (LWAB) the total surface free energy was calculated from the determined components of the energy, which were obtained from the advancing contact angles of the probe liquids only. Comparison of the results obtained by two approaches provided more information about the changes in the hydrophobicity/hydrophilicity of the layers depending on the number of monolayers and kind of the lipid deposited on the glass surface. It was found that the most visible changes in the surface free energy took place for the first two statistical monolayers irrespectively of the kind of the lipid used. Additionally, in all cases periodic oscillations from layer-to-layer in the lipid surface free energy were observed. The changes in the surface free energy correlated with those in the topography and roughness of lipid layers. (C) 2010 Elsevier B. V. All rights reserved.