Applied Surface Science, Vol.256, No.21, 6233-6236, 2010
Electrons diffusion study on the nitrogen-doped nanocrystalline diamond film grown by MPECVD method
Nitrogen-doped nanocrystalline diamond (NNCD) films were deposited onto p-type silicon substrates with three different layer structures: (i) directly onto the silicon substrate (NNCD/Si), (ii) silicon with undoped nanocrystalline diamond layer which was deposited in the same way as the above mentioned NNCD by the recipe Ar/CH4/H-2 with a ratio of 98%/1%/1% (NNCD/NCD/Si), and (iii) silicon wafer with 100 nm thickness SiO2 layer (NNCD/SiO2/Si). Atomic force microscopy (AFM), X-ray diffraction (XRD) and Raman spectroscopy were employed to characterize the morphology and microstructure of the as-grown nitrogen-doped diamond films. Silver colloid/silver contacts were made at to measure the current-voltage (I-V) characteristics for the three different structures. Electrons from a CVD reactor hydrogen plasma diffuse toward the p-type silicon substrate during a deposition process under the high temperature (similar to 800 degrees C). The study concluded that the SiO2 layer could effectively prevents the diffusion of electrons. (C) 2010 Elsevier B.V. All rights reserved.