- Previous Article
- Next Article
- Table of Contents
Biochemical and Biophysical Research Communications, Vol.398, No.1, 1-6, 2010
miRNA-331-3p directly targets E2F1 and induces growth arrest in human gastric cancer
Deregulation of E2F1 activity is characteristic of gastric tumorigenesis, which involves in complex molecular mechanisms. microRNA is one of the post-transcriptional regulators for gene expression. Here, we report a member of miR-331 family, miR-331-3p, which was decreased in some kinds of malignancies. However, the biological function of miR-331-3p on gastric cancer is largely unknown. In this study, we screened the expressing levels of miR-331-3p and E2F1 in gastric cancer cell lines. We transfected precursor or inhibitor of miR-331-3p into gastric cancer cells. As results, miR-331-3p is down-regulated in all gastric cancer cell lines by real-time PCR. Over-expression of miR-331-3p blocked G1/S transition on SGC-7901 and AGS cell lines. Introduction of miR-331-3p dramatically suppressed the ability of colony formation and cell growth in vitro by interfering E2F1 activity. Our data highlight an important role of miR-331-3p in cell cycle control by targeting 3'-UTR of cell cycle-related molecule E2F1. We concluded that miR-331-3p is a potential tumor suppressor in gastric cancer. Restoring miR-331-3p in gastric cancer cells revealed potential application in gastric cancer therapy. (C) 2010 Published by Elsevier Inc.