화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.398, No.2, 166-172, 2010
ERK1 nucleocytoplasmic shuttling rate depends on specific N-terminal aminoacids
Despite ERK1 and ERK2 were considered interchangeable isoforms for a long time, their roles are now emerging as only partially overlapping. We recently reported that the nucleocytoplasmic trafficking of GFP-tagged ERK1 is slower than that of ERK2, this difference being caused by a unique domain of ERK1 located at its N-terminus (ERK1-Nt). In the present report we further investigated this issue by asking which were the specific aminoacids involved in such process. By photobleaching strategy, we demonstrated that ERK1-Nt is a domain capable to slow down the nucleocytoplasmic shuttling rate even of a small cargo protein. ERK1-Nt was then dissected into three regions as follows: 1 (aa 1-9), 2 (aa 10-29) and 3, (aa 30-39) that were deleted or mutated at specific sites. Dynamic imaging assessment of the role played by each region in determining the shuttling rate revealed that: region 1 has no significant role, region 2 and specific aminoacids of region 3 (V-31, K-33, P-36) are critical, but singularly do not totally account for the difference in the shuttling rate between ERK1 and 2. Finally, we demonstrated that the nucleocytoplasmic shuttling rate of a passively diffusing protein (mRED) is inversely related to ERK1-Nt-GFP concentrations inside the cell, thus suggesting that ERK1-Nt-GFP occupies the nuclear pore perhaps because of an important affinity of ERK1-Nt for nucleoporins. In conclusion, ERK1-Nt is a domain able per se to confer a slower shuttling rate to a cargo protein. Specific regions within this domain were identified as responsible for this biophysical property. (C) 2010 Elsevier Inc. All rights reserved.