Biochemical and Biophysical Research Communications, Vol.399, No.3, 429-433, 2010
Amphotericin B inhibits entry of Leishmania donovani into primary macrophages
Visceral leishmaniasis is a vector-borne disease caused by an obligate intra-macrophage protozoan parasite Leishmania donovani. The molecular mechanisms involved in internalization of Leishmania are still poorly understood. Amphotericin B and its formulations are considered as the best existing drugs against visceral leishmaniasis and are being increasingly used. The reason for its antileishmanial activity is believed to be its ability to bind ergosterol found in parasite membranes. In case of in vivo amphotericin B treatment, both host macrophages and parasites are exposed to amphotericin B. The effect of amphotericin B treatment could therefore be due to a combination of its interaction with both sterols i.e., ergosterol of Leishmania and cholesterol of host macrophages. We report here that cholesterol complexation by amphotericin B markedly inhibits binding of L. donovani promastigotes to macrophages. These results represent one of the first reports on the effect of amphotericin B on the binding of Leishmania parasites to host macrophages. Importantly, these results offer the possibility of reevaluating the mechanism behind the effectiveness of current therapeutic strategies that employ sterol-complexing agents such as amphotericin B to treat leishmaniasis. (C) 2010 Elsevier Inc. All rights reserved.
Keywords:Amphotericin B;Cholesterol;Leishmania donovani;Lipid-receptor interactions;Primary macrophages