화학공학소재연구정보센터
Macromolecular Research, Vol.18, No.7, 641-647, July, 2010
Preparation of Near-Infrared Quantum Dots-Herceptin Conjugates for Cancer Imaging
E-mail:
High-quality, near-infrared CdTe/CdSe core/shell quantum dots (QDs) formed in organic solvents can be dissolved completely in water using amphiphilic polymers, such as octylamine-modified poly(acrylic acid). The native hydrophobic ligands of QDs may be retained and used to interact with an amphiphilic polymer. Neutralized, octylamine-modified poly(acrylic acid) complexes hydrophobically capped CdTe/CdSe QDs, making them watersoluble. Fluorescence spectrophotometry showed that the quantum dot-polymer composites have strong photo-luminescence and are very stable in aqueous solutions. The surfaces of the water-soluble QDs can be conjugated to biomolecules, such as antibodies that target the human breast cancer cell line SK-BR-3, which is over expresses the HER-2 receptor (epidermal growth factor receptor-2). QD-Bioconjugates were characterized by UV-Vis spectroscopy, fluorescence photospectroscopy and confocal microscopy. Finally, it was confirmed that QDs-antibody bioconjugates efficiently labeled the cell membranes (targeted to HER-2 receptors) by comparing the water soluble QDs and QDs-antibody bioconjugates.
  1. Clapp AR, Goldman ER, Uyeda HT, Chang EL, Whitley JL, Medintz IL, J. Sensors, 2008, 1 (2008)
  2. Alivisatos AP, Gu WW, Larabell C, Annu. Rev. Biomed. Eng., 7, 55 (2005)
  3. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Science, 307, 538 (2005)
  4. Jiang W, Singhal A, Kim B, Zheng J, Rutka J, Wang C, Chan W, J. Asso. Lab. Auto., 13, 6 (2008)
  5. Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S, Cur. Opin. Biotech., 13, 40 (2002)
  6. Zintchenko A, Susha AS, Concia M, Feldmann J, Wagner E, Rogach AL, Ogris M, Mole. Therapy, 17, 1849 (2009)
  7. Bailey RE, Smith AND, Nie S, Physica, 25, 1 (2004)
  8. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV, Nat. Biotechnol., 22, 93 (2004)
  9. Bhang SH, Won NY, Lee TJ, Jin H, Nam JT, Park JH, Chung HK, Park HS, Sung YE, Hahn SK, Kim BS, Kim SJ, ACS Nano, 6, 1389 (2009)
  10. Liu W, Choi HS, Zimmer JP, Tanaka E, Frangioni JV, Bawendi M, J. Am. Chem. Soc., 47, 14530 (2007)
  11. Wang Y, Tang ZY, Correa-Duarte MA, Pastoriza-Santos I, Giersig M, Kotov NA, Liz-Marzan LM, J. Phys. Chem. B, 108(40), 15461 (2004)
  12. Zhuang J, Zhang X, Wang G, Li D, Yang W, Li T, J. Mater. Chem., 13, 1853 (2003)
  13. Kho R, Torres-Martinez CL, Mehra RK, J. Colloid Interface Sci., 227(2), 561 (2000)
  14. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Radler J, Natile G, Parak WJ, Nano Lett., 4, 703 (2004)
  15. Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP, Nat. Biotechnol., 21, 41 (2003)
  16. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A, Science, 298, 1759 (2002)
  17. Sharkey RM, Goldenberg DM, Cancer J. Clin., 56, 226 (2006)
  18. Pietras RJ, Fendley BM, Chazin VR, Pegram MD, Howell SB, Slamon DJ, Oncogene, 9, 1829 (1994)
  19. Tana WB, Jianga S, Zhang Y, Biomaterials, 28, 1565 (2007)
  20. Wuang SC, Neoh KG, Kang ET, Pack DW, Leckband DE, Biomaterials, 29, 2270 (2008)
  21. Lee YK, Macromol. Res., 14(3), 387 (2006)
  22. Lee YK, Hong SM, Kim JS, Im JH, Min HS, Subramanyam E, Huh KM, Park SW, Macromol. Res., 15(4), 330 (2007)