화학공학소재연구정보센터
Clean Technology, Vol.16, No.3, 198-205, September, 2010
열분해 반응조건에 따른 염화탄화수소 생성물 분포 특성
Thermal Product Distribution of Chlorinated Hydrocarbons with Pyrolytic Reaction Conditions
E-mail:
초록
염화탄화수소 열분해와 생성물분포 특성을 고찰하기 위해 등온 관형 반응기를 이용해 두 가지 실험을 수행하였다. 첫 번째는 반응분위기에 따른 열분해 특성을 파악하기 위해 H2 또는 Ar 반응분위기에서 dichloromethane(CH2Cl2) 분해율과 생성물분포 특성을 고찰하였다. Ar 반응분위기(CH2Cl2/Ar 반응계)에서 보다 H2 반응분위기(CH2Cl2/H2 반응계)에서 CH2Cl2 분해율이 더 높았다. 이는 반응성 기체인 H2 분위기에서 CH2Cl2 분해를 촉진시키며 수소 첨가 탈염소반응을 통해 탈염소화된 탄화수소화합물을 생성시키며, 다환방향족탄화수소(polycyclic aromatic hydrocarbon: PAH)와 soot 생성을 억제하기 때문이다. CH2Cl2/H2 반응계에서 주요생성물로 탈염소화합물인 CH3Cl, CH4, C2H6, C2H4, HCl 등이 생성되었으며, 미량 생성물로 chloroethylene이 검출되었다. CH2Cl2/Ar 반응계에서는 탄소물질수지가 낮았으며 특히 반응온도 750 ℃ 이상에서 탄소물질수지가 더 낮게 나타났다. 주요 생성물로는 chloroethylene과 HCl이 검출되었으며, 미량 생성물로는 CH3Cl과 C2H2이 검출되었다. 고온 Ar 반응분위기에서 CH4 주입에 따른 chloroform(CHCl3) 분해와 생성물분포 특성을 비교 고찰하였다. CHCl3 분해율을 비교해 보면 CH4을 주입할 경우(CHCl3/CH4/Ar 반응계)가 CH4을 주입하지 않았을 경우(CHCl3/Ar 반응계)보다 분해율이 낮았다. 이는 CHCl3가 분해되면서 생성되는 활성도가 큰 이중라디칼(diradical)인 :CCl2가 첨가물로 주입된 CH4와 반응하여 소모됨으로써 CHCl3 분해율이 상대적으로 감소되기 때문이다. Ar 반응분위기에서 CH4 첨가 여부에 따라 CHCl3이 분해되면서 생성되는 생성물 분포는 큰 차이를 나타내고 있었다. 앞에서 고찰된 각 반응계에서 분해율 비교와 생성물 분포특성을 고려하고 열화학이론 및 반응속도론을 기초로 주요 반응경로를 제시하였다.
Two sets of thermal reaction experiment for chlorinated hydrocarbons were performed using an isothermal tubular-flow reactor in order to investigate thermal decomposition, including product distribution of chlorinated hydrocarbons. The effects of H2 or Ar as the reaction atmosphere on the thermal decomposition and product distribution for dichloromethane(CH2Cl2) was examined. The experimental results showed that higher conversion of CH2Cl2 was obtained under H2 atmosphere than under Ar atmosphere. This phenomenon indicates that reactive-gas H2 reaction atmosphere was found to accelerate CH2Cl2 decomposition. The H2 plays a key role in acceleration of CH2Cl2 decomposition and formation of dechlorinated light hydrocarbons, while reducing PAH and soot formation through hydrodechlorination process. It was also observed that CH3Cl, CH4, C2H6, C2H4 and HCl in CH2Cl2/H2 reaction system were the major products with some minor products including chloroethylenes. The CH2Cl2/Ar reaction system gives poor carbon material balance above reaction temperature of 750℃. Chloroethylenes and soot were found to be the major products and small amounts of CH3Cl and C2H2 were formed above 750℃ in CH2Cl2/Ar. The thermal decomposition reactions of chloroform(CHCl3) with argon reaction atmosphere in the absence or the presence of CH4 were carried out using the same tubular flow reactor. The slower CHCl3 decay occurred when CH4 was added to CHCl3/Ar reaction system. This is because :CCl2 diradicals that had been produced from CHCl3 unimolecular dissociation reacted with CH4. It appears that the added CH4 worked as the :CCl2 scavenger in the CHCl3 decomposition process. The product distributions for CHCl3 pyrolysis under argon bath gas were distinctly different for the two cases: one with CH4 and the other without CH4. The important pyrolytic reaction pathways to describe the important features of reagent decay and intermediate product distributions, based upon thermochemistry and kinetic principles, were proposed in this study.
  1. Grayson M, Encyclopedia of Chemical Technology, Vol. 5, Wiley, NY, pp. 243-267 (2004)
  2. Pausteinbach DH, The Risk Assessment of Environmental and Human Health Hazards, John Wiley & Sons, N.Y., pp. 354-389 (2003)
  3. Lee DH, Kim SD, Kim BN, Won YS, Han DH, Korean J. Chem. Eng., 26(6), 1601 (2009)
  4. Lagrega MD, Buckingham PL, Evans JC, Hazardous Waste Management, McGraw Hill, NJ, pp. 705-760. (2006)
  5. Won YS, J. Ind. Eng. Chem., 13(3), 400 (2007)
  6. Wu YP, Won YS, Combust. Flame, 122(3), 312 (2000)
  7. Han DH, Won YS, Stuchinskaya T, Park WS, Lim JK, Radiat. Phys. Chem., 67(1), 51 (2003)
  8. Won YS, Korean J. Chem. Eng., 26(1), 36 (2009)
  9. Chuang SC, Bozzelli JW, Environ. Sci. Tech., 20, 568 (1986)
  10. Won YS, J. Ind. Eng. Chem., 15(4), 510 (2009)
  11. Wu YP, Won YS, J. Ind. Eng. Chem., 9(6), 775 (2003)
  12. Choi SP, Won YS, J. Korean Soc. Environ. Eng., 17(2), 167 (1995)
  13. Ministry of Energy, Waste Management Act (2010)
  14. Won YS, Lee TJ, Wu YPG, Deshusses MA, J. Ind. Eng. Chem., 10(1), 60 (2004)
  15. Benson SW, Thermochemical Kinetics, 2nd Ed., John Willey & Sons, NY, pp. 156-204. (1976)
  16. Tsang W, Combust. Sci. Tech., 74, 99 (1990)
  17. Kerr JA, Moss SJ, Handbook of Bimolecular and Termolecular Gas Reactions, CRC Press, Florida (1998)
  18. NIST, Chemical Gas Kinetics Database, Version 5.0 (2007)
  19. Frenklach M, Clary DW, Yuan T, Combust. Sci. Tech., 50, 79 (1986)
  20. Wang H, Hahn T, Law CK, Combust. Flame., 105, 291 (1996)
  21. Malanchuk M, Report for Non-Flame Hazardous Waste Thermal Destruction, EPA-600/ 2-86-105 (1987)
  22. Won YS, Bozzelli JW, Combust. Sci. Tech., 85, 345 (1992)
  23. Tirey DA, Taylor PH, Kasner J, Dellinger B, Combust. Sci. Tech., 74, 137 (1990)