화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.16, No.5, 688-697, September, 2010
Electrocatalytic characteristics of Pt-Ru-Co and Pt-Ru-Ni based on covalently cross-linked sulfonated poly(ether ether ketone)/heteropolyacids composite membranes for water electrolysis
E-mail:
Membrane electrode assemblies (MEAs) of covalently cross-linked sulfonated poly(ether ether ketone) (CL-SPEEK)/heteropolyacids (HPAs) composite polymer with platinum-based alloys such as Pt-Ru-Co and Pt-Ru-Ni were prepared and their electrochemical properties for water electrolysis were investigated. The HPAs, which were used in the composite membranes, were tungstophosphoric acid (TPA) (the part of TPA data was permitted by the previous authors), molybdophosphoric acid (MoPA), and tungstosilicic acid (TSiA). The MEAs with Pt-Co, Pt-Ru-Co, and Pt-Ru-Ni in the anode catalyst layer were prepared by means of a non-equilibrium impregnation.reduction (I-R) method. The electrocatalytic properties of composite membranes, such as the cell voltage and coulombic charge in CV, were in the following order: CL-SPEEK/MoPA40 > CL-SPEEK/TPA30 > CL-SPEEK/TSiA40 (wt%). For the optimum cell applications of water electrolysis, the cell voltage of Pt/PEM/Pt-Ru-Co (Electrodeposited (Dep)-MoPA) MEA with a CL-SPEEK/MoPA40 membrane was 1.70 V at 80 ℃ and 1 A cm^(-2), and this voltage carried a value lower than that of 1.81 V of Nafion 117. In addition, the observed activity of Pt-Ru-Co (75:12:13 by EDX) is a little higher than that of Pt-Ru-Ni (79:10:11 by EDX). The mean coulombic charge and activity enhancement of Pt-Ru-Co catalysts, with and without electrodeposition, showed the same CV profiles of the Pt-Ru-Co catalysts and were in the following order: Nafion 117 < CL-SPEEK/TSiA40 < CL-SPEEK/TPA30 < CL-SPEEK/MoPA40. The current density peak of electrodeposited electrodes was a little better than those of inactivated electrodes on the same membranes. The current peak by Pt-Ru-Co with CL-SPEEK/MoPA40 (Dep-MoPA) is more than about three times as high as those of Pt electrodes on the same membranes.
  1. Millet P, Andolfatto F, Durand R, Int. J. Hydrogen Energy., 21, 87 (1996)
  2. Jo MC, Kwon GH, Li W, Lane AM, J. Ind. Eng. Chem., 15(3), 336 (2009)
  3. Lu PWT, Srinivasan S, J. Appl. Electrochem., 9, 269 (1979)
  4. Grigoriev SA, Porembsky VI, Fateev VN, Int. J. Hydrogen Energy., 31, 171 (2006)
  5. Lee JS, Quan ND, Hwang JM, Lee SD, Kim HG, Lee HJ, Kim HS, J. Ind. Eng. Chem., 12(2), 175 (2006)
  6. Patel R, Im SJ, Ko YT, Kim JH, Min BR, J. Ind. Eng. Chem., 15(3), 299 (2009)
  7. Jang IY, Kweon OH, Kim KE, Hwang GJ, Moon SB, Kang AS, J. Membr. Sci., 322(1), 154 (2008)
  8. Takenaka H, Torikai E, Kawami Y, Wakabayashi N, Int. J. Hydrogen Energy., 7, 397 (1982)
  9. Millet P, Pineri M, Durand R, J. Appl. Electrochem., 19, 162 (1989)
  10. Liu R, Her WH, Fedkiw PS, J. Electrochem. Soc., 139, 15 (1992)
  11. Hsieh CT, Chou YW, Chen WY, J. Alloys Compd., 466, 233 (2008)
  12. Stanis RJ, Kuo MC, Rickett AJ, Turner JA, Herring AM, Electrochim. Acta, 53(28), 8277 (2008)
  13. Savadogo O, Int. J. Hydrogen Energy., 27, 157 (2002)
  14. Fricoteaux P, Savadogo O, Electrochim. Acta, 44(17), 2927 (1999)
  15. Savadogo O, Ndzebet E, Int. J. Hydrog. Energy, 26(3), 213 (2001)
  16. Jang IY, Kweon OH, Kim KE, Hwang GJ, Moon SB, Kang AS, J. Power Sources, 181(1), 127 (2008)
  17. Sogaard M, Odgaard M, Skou EM, Solid State Ion., 145(1-4), 31 (2001)
  18. Fujiwara N, Yasuda K, Ioroi T, Siroma Z, Miyazaki Y, Electrochim. Acta, 47(25), 4079 (2002)
  19. Miyatake K, Watanabe M, Electrochemistry., 73, 12 (2005)
  20. Ding FC, Wang SJ, Xiao M, Li XH, Meng YZ, J. Power Sources, 170(1), 20 (2007)
  21. Zaidi SMJ, Mikhailenko SD, Robertson GP, Guiver MD, Kaliaguine S, J. Membr. Sci., 173(1), 17 (2000)
  22. Kim YS, Wang F, Hickner M, Zawodzinski TA, McGrath JE, J. Membr. Sci., 212(1-2), 263 (2003)
  23. Guhan S, Sangeetha D, Int. J. Polym. Mater., 58, 87 (2009)
  24. Choi JK, Lee DK, Kim YW, Min BR, Kim JH, J. Polym. Sci. B: Polym. Phys., 46(7), 691 (2008)
  25. Lee HJ, Jung YK, Jang IY, Hwang GJ, Bae KI, Sim SK, Kang AS, Trans. Korean Hydrogen New Energy Soc., 16, 40 (2005)
  26. Miyatake K, Asano N, Tombe T, Watanabe M, Electrochemistry., 75, 122 (2007)
  27. Kopitzke RW, Linkous CA, Anderson HR, Nelson GL, J. Electrochem. Soc., 147(5), 1677 (2000)
  28. Ismail AF, Othman NH, Mustafa A, J. Membr. Sci., 329(1-2), 18 (2009)
  29. Tazi B, Savadogo O, Electrochim. Acta, 45(25-26), 4329 (2000)
  30. Ramani V, Kunz HR, Fenton JM, J. Membr. Sci., 232(1-2), 31 (2004)
  31. Dowling NE, Mechanical Behaviour ofMaterials, Prentice-Hall, NewJersey (1993)
  32. Luis AS, Prado A, Ponce ML, Funari SS, Schulte K, Garamus VM, Willumeit R, Nunes SP, J. Non-Cryst. Solids., 351, 2194 (2005)
  33. Zhang L, Mukerjee S, J. Electrochem. Soc., 15, A1062 (2006)
  34. Meng FQ, Aieta NV, Dec SF, Horan JL, Williamson D, Frey MH, Pham P, Turner JA, Yandrasits MA, Hamrock SJ, Herring AM, Electrochim. Acta, 53(3), 1372 (2007)
  35. Antolini E, Mater. Chem. Phys., 78(3), 563 (2003)
  36. Xue XZ, Liu CP, Xing W, Lu TH, J. Electrochem. Soc., 153(5), E79 (2006)
  37. Koh S, Yu C, Mani P, Srivastava R, Strasser P, J. Power Sources, 172(1), 50 (2007)
  38. Pozio A, De Francesco M, Cemmi A, Cardellini F, Giorgi L, J. Power Sources, 105(1), 13 (2002)
  39. Strasser P, Fan Q, Devenney M, Weinberg WH, Liu P, Norskov JK, J. Phys. Chem. B, 107(40), 11013 (2003)