화학공학소재연구정보센터
Polymer(Korea), Vol.34, No.6, 522-526, November, 2010
탄소원에 따른 Bacterial Cellulose 의 물성
Properties of Bacterial Cellulose Cultured in Different Carbon Sources
E-mail:
초록
Bacterial cellulose는 초산균인 Gluconacetobacter xylinus에 의해 생산되며, 배양 배지의 표면에 나노섬유상의 막을 형성한다. 본 연구에서는 배지의 조성에서 탄소원을 달리하여 생산한 bacterial cellulose의 결정화도, 점도, 모폴로지와 역학적 물성을 살펴보았다. Gluconacetobacter sp. V6 균은 세 종류의 배양 배지에서 정치 상태로 배양되었다. 배양 배지로는 표준 Hestrin-Schramm 배지와 탄소원으로 glycerol 또는 molasses를 첨가한 개질 배지가 각각 사용되었다. 세포 성장과 셀룰로오스 수율은 molasses 배지와 glycerol 배지에서 증가하였다. Glycerol 배지를 사용한 배양은 결정화도와 고유점도, 파단응력과 같은 셀룰로오스의 물성을 향상시켰으나, molasses 배지를 사용한 배양은 셀룰로오스의 결정화도, 미결정의 크기, 고유점도를 감소시켰다. 요약하면, molasses 배지에서 셀룰로오스의 수율은 현저히 향상되었으나, 낮은 구조적 물성을 가졌다.
Bacterial cellulose is produced by the bacterium Gluconacetobacter xylinus, which forms a nanofibrous pellicle in its culture medium. We studied properties of the bacterial cellulose such as crystallinity, viscosity, morphology, and mechanical properties according to the carbon source. Static cultures of Gluconacetobacter sp. V6 were performed in three kinds of media: standard Hestrin-Schramm medium, and modified medium with either glycerol or molasses as carbon sources. Cell growth and cellulose yield were increased in the glycerol and molasses media. The culture in the glycerol medium improved the physical properties of cellulose such as crystallinity, intrinsic viscosity, and breaking stress. However, the culture in the molasses medium decreased crystallinity, crystallite size, and intrinsic viscosity of cellulose. In summary, the cellulose yield was remarkably improved in the molasses medium, but with inferior structural properties.
  1. Cannon RE, Anderson SM, Crit. Rev. Microbiol., 17, 435 (1991)
  2. Son HJ, Lee OM, Kim YG, Korean J. Biotechnol. Bioeng., 15, 573 (2000)
  3. Czaja W, Romanovicz D, Brown R, Cellulose, 11, 403 (2004)
  4. Kaewnopparat S, Sansernluk K, Faroongsarng D, AAPS Pharm. Sci. Tech., 9, 701 (2008)
  5. Watanabe K, Tabuchi M, Morinaga Y, Cellulose, 5, 187 (1998)
  6. Koizumi S, Yue Z, Tomita Y, Kondo T, Iwase H, Yamaguchi D, Hashimoto T, Eur. Phys. J. E., 26, 137 (2008)
  7. Lim H, Kye H, Won S, Nam JD, Lee Y, Polym.(Korea), 32(2), 178 (2008)
  8. Lee S, Lee S, Lim H, Kye H, Lee Y, Polym.(Korea), 30(6), 532 (2006)
  9. Kim SJ, Song HJ, Chang MH, Korean J. Biotechnol. Bioeng., 22, 91 (2007)
  10. Moon SH, Park JM, Chun HY, Biotechnol. Bioprocess Eng., 11, 26 (2006)
  11. Cornelia W, Dieter K, Cellulose, 13, 485 (2006)
  12. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ, J. Appl. Microbiol., 107(2), 576 (2009)
  13. Keshk S, Sameshima K, Afr. J. Biotechnol., 4, 478 (2005)
  14. Tokoh C, Takabe K, Fujita M, Cellulose, 5, 249 (1998)
  15. Roukas T, Process Biochem., 33(8), 805 (1998)
  16. Bae SO, Shoda M, Appl. Microbiol. Biotechnol., 67(1), 45 (2005)
  17. Jung HI, Lee OM, Jeong JH, Jeon YD, Park KH, Kim HS, An WG, Son HJ, Appl. Biochem. Biotechnol., 162(2), 486 (2010)
  18. Yamamoto H, Horii F, Macromolecules, 26, 1313 (1993)
  19. Hirai A, Tsuji M, Yamamoto H, Cellulose, 5, 201 (1998)
  20. Jung YJ, Bulletin of the Korean Fisheries Society, 41, 237 (2008)
  21. Kim HS, Bae SY, J. Korea Textile Sci. Eng., 32, 150 (1995)
  22. Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P, J. Colloid Interface Sci., 316(2), 360 (2007)