화학공학소재연구정보센터
Canadian Journal of Chemical Engineering, Vol.88, No.5, 696-709, 2010
APPLICATION OF SUPPORT VECTOR REGRESSION FOR DEVELOPING SOFT SENSORS FOR NONLINEAR PROCESSES
The field of soft sensor development has gained significant importance in the recent past with the development of efficient and easily employable computational tools for this purpose. The basic idea is to convert the information contained in the input-output data collected from the process into a mathematical model. Such a mathematical model can be used as a cost efficient substitute for hardware sensors. The Support Vector Regression (SVR) tool is one such computational tool that has recently received much attention in the system identification literature, especially because of its successes in building nonlinear blackbox models. The main feature of the algorithm is the use of a nonlinear kernel transformation to map the input variables into a feature space so that their relationship with the output variable becomes linear in the transformed space. This method has excellent generalisation capabilities to high-dimensional nonlinear problems due to the use of functions such as the radial basis functions which have good approximation capabilities as kernels. Another attractive feature of the method is its convex optimization formulation which eradicates the problem of local minima while identifying the nonlinear models. In this work, we demonstrate the application of SVR as an efficient and easy-to-use tool for developing soft sensors for nonlinear processes. In an industrial case study, we illustrate the development of a steady-state Melt Index soft sensor for an industrial scale ethylene vinyl acetate (EVA) polymer extrusion process using SVR. The SVR-based soft sensor, valid over a wide range of melt indices, outperformed the existing nonlinear least-square-based soft sensor in terms of lower prediction errors. In the remaining two other case studies, we demonstrate the application of SVR for developing soft sensors in the form of dynamic models for two nonlinear processes: a simulated pH neutralisation process and a laboratory scale twin screw polymer extrusion process. A heuristic procedure is proposed for developing a dynamic nonlinear-ARX model-based soft sensor using SVR, in which the optimal delay and orders are automatically arrived at using the input-output data.