Chemical Engineering Communications, Vol.198, No.2, 214-234, 2011
HEAT AND MASS TRANSFER IN STAGNATION-POINT FLOW OF A POLAR FLUID TOWARDS A STRETCHING SURFACE IN POROUS MEDIA IN THE PRESENCE OF SORET, DUFOUR AND CHEMICAL REACTION EFFECTS
This work is focused on the numerical solution of steady boundary-layer stagnation-point flow of a polar fluid towards a stretching surface embedded in porous media in the presence of the effects of Soret and Dufour numbers and first-order homogeneous chemical reaction. The governing boundary-layer equations of the problem are formulated and transformed into a self-similar form. The obtained equations are solved numerically by an efficient, iterative, tri-diagonal, implicit finite-difference method. Both assisting and opposing flow conditions are considered. Comparisons of the present numerical results with previously published work under limiting cases are performed and found to be in excellent agreement. Representative results for the fluid velocity, angular velocity, temperature, and solute concentration profiles as well as the local heat and mass transfer rates for various values of the physical parameters are displayed in both graphical and tabular forms.
Keywords:Chemical reaction;Porous media;Soret and Dufour effects;Stagnation point;Stretching surface