Chemical Engineering Science, Vol.65, No.18, 5256-5263, 2010
Slug flow characteristics of gas-miscible liquids in a rectangular microchannel with cross and T-shaped junctions
The slug flow of an inert gas and two miscible liquids in microchannels has found its applications in the preparation of solid lipid nanoparticles (SLNs) by the liquid flow-focusing together with Taylor bubbles in microchannel systems, synthesis of metal nanoparticles or colloid silica in microreactors and enhancement of micro-mixing by interaction using gas bubbles in microfluidic devices. In this work, the flow characteristics of the slug flow generated by nitrogen gas and two miscible liquids (the aqueous surfactant solution and acetone or ethanol) flowing in a rectangular microchannel were investigated experimentally by using the high-speed optical imaging method. The microchannel system has a straight main channel for introducing one of the miscible liquids, a cross-junction for injecting of the other miscible liquid, and a T-junction for feeding the gas phase. The pressure drops were measured and images of Taylor bubbles and slug units at various velocities were obtained, from which other flow parameters were determined. Correlations for the velocity and length of Taylor bubbles, the bubble nose length, the bubble tail length, the liquid slug length, the maximum and minimum thicknesses of the liquid films around bubbles, as well as the pressure drop, were proposed. The calculated values of these parameters by using the correlations were compared with the experimental data. The results showed that the proposed correlations are in a good or reasonable agreement with experimental data and then expected to be available in the estimation of the slug flow parameters of the inert gas and two miscible liquids in rectangular microchannels. (C) 2010 Elsevier Ltd. All rights reserved.