Korean Journal of Chemical Engineering, Vol.28, No.2, 402-408, February, 2011
Effects of La2O3 on ZrO2 supported Ni catalysts for autothermal reforming of CH4
E-mail:
The effect of La2O3 content in Ni-La-Zr catalyst was investigated for the autothermal reforming (ATR) of CH4. The catalysts were prepared by the coprecipitation method and had a mesoporous structure. Temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) indicated that a strong interaction developed between Ni species and the support with the addition of La2O3. Thermogravimetric analysis (TGA) and H2-pulse chemisorption showed that the addition of La2O3 led to well dispersed NiO molecules on the support. Ni-La-Zr catalysts gave much higher CH4 conversion than Ni-Zr catalyst. The Ni-La-Zr containing 3.2 wt% La2O3 showed the highest activity. The optimum conditions for maximal CH4 conversion and H2 yield were H2O/CH4=1.00, O2/CH4=0.75. Under these conditions, CH4 conversion of 83% was achieved at 700 ℃. In excess O2 (O2/CH4>0.88), the catalytic activity was decreased due to sintering of the catalyst.
- Cai X, Dong X, Lin W, J. Nat. Gas Chem., 15, 122 (2006)
- Choi SO, Ahn IY, Moon SH, Korean J. Chem. Eng., 26(5), 1252 (2009)
- Escritori JC, Dantas SC, Soares RR, Hori CE, Catal. Commun., 10, 1090 (2009)
- Jun JH, Jeong KS, Lee TJ, Kong SJ, Lim TH, Nam SW, Hong SA, Yoon KJ, Korean J. Chem. Eng., 21(1), 140 (2004)
- Koo K, Yoon J, Lee C, Joo H, Korean J. Chem. Eng., 25(5), 1054 (2008)
- Park S, Chun K, Yoon W, Kim S, Res. Chem. Intermed., 34, 781 (2008)
- Roh HS, Jun KW, Catal. Surv. Asia., 12, 239 (2008)
- Wang HM, J. Power Sources, 177(2), 506 (2008)
- Mukainakano Y, Li BT, Kado S, Miyazawa T, Okumura K, Miyao T, Naito S, Kunimori K, Tomishige K, Appl. Catal. A: Gen., 318, 252 (2007)
- Dong WS, Jun KW, Roh HS, Liu ZW, Park SE, Catal. Lett., 78(1-4), 215 (2002)
- Martinez R, Romero E, Guimon C, Bilbao R, Appl. Catal. A: Gen., 274(1-2), 139 (2004)
- Roh HS, Jun KW, Dong WS, Chang JS, Park SE, Joe YI, J. Mol. Catal. A: Chem., 18, 137 (2002)
- Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Park SB, Int. J. Hydrogen Energy., 33, 2036 (2008)
- Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Bin Park S, Appl. Catal. A: Gen., 340(2), 183 (2008)
- Rezaei M, Alavi SM, Sahebdelfar S, Bai P, Liu XM, Yan ZF, Appl. Catal. B: Environ., 77(3-4), 346 (2008)
- Ma T, Huang Y, Yang J, He J, Zhao L, Mater. Des., 25, 515 (2004)
- Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH, J. Power Sources, 177(2), 247 (2008)
- Wei JM, Xu BQ, Li JL, Cheng ZX, Zhu QM, J. Mol.Catal. A: Chem., 196, 167 (2000)
- Rouquerol J, Pure Appl. Chem., 66, 1739 (1994)
- Sing KSW, Pure Appl. Chem., 57, 603 (1985)
- Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
- Slagtern A, Schuurman Y, Leclercq C, Verykios X, J. Catal., 172(1), 118 (1997)
- Gadalla AM, Bower B, Chem. Eng. Sci., 43, 3049 (1988)
- Tsang SC, Claridge JB, Green ML, Catal. Today, 23(1), 3 (1995)
- Sainchez-Sainchez MC, Int. J. Hydrogen Energy., 32, 1462 (2007)
- Hickman DA, Science., 259, 343 (1993)
- Trimm DL, Catal. Today, 49(1-3), 3 (1999)