화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.2, 402-408, February, 2011
Effects of La2O3 on ZrO2 supported Ni catalysts for autothermal reforming of CH4
E-mail:
The effect of La2O3 content in Ni-La-Zr catalyst was investigated for the autothermal reforming (ATR) of CH4. The catalysts were prepared by the coprecipitation method and had a mesoporous structure. Temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) indicated that a strong interaction developed between Ni species and the support with the addition of La2O3. Thermogravimetric analysis (TGA) and H2-pulse chemisorption showed that the addition of La2O3 led to well dispersed NiO molecules on the support. Ni-La-Zr catalysts gave much higher CH4 conversion than Ni-Zr catalyst. The Ni-La-Zr containing 3.2 wt% La2O3 showed the highest activity. The optimum conditions for maximal CH4 conversion and H2 yield were H2O/CH4=1.00, O2/CH4=0.75. Under these conditions, CH4 conversion of 83% was achieved at 700 ℃. In excess O2 (O2/CH4>0.88), the catalytic activity was decreased due to sintering of the catalyst.
  1. Cai X, Dong X, Lin W, J. Nat. Gas Chem., 15, 122 (2006)
  2. Choi SO, Ahn IY, Moon SH, Korean J. Chem. Eng., 26(5), 1252 (2009)
  3. Escritori JC, Dantas SC, Soares RR, Hori CE, Catal. Commun., 10, 1090 (2009)
  4. Jun JH, Jeong KS, Lee TJ, Kong SJ, Lim TH, Nam SW, Hong SA, Yoon KJ, Korean J. Chem. Eng., 21(1), 140 (2004)
  5. Koo K, Yoon J, Lee C, Joo H, Korean J. Chem. Eng., 25(5), 1054 (2008)
  6. Park S, Chun K, Yoon W, Kim S, Res. Chem. Intermed., 34, 781 (2008)
  7. Roh HS, Jun KW, Catal. Surv. Asia., 12, 239 (2008)
  8. Wang HM, J. Power Sources, 177(2), 506 (2008)
  9. Mukainakano Y, Li BT, Kado S, Miyazawa T, Okumura K, Miyao T, Naito S, Kunimori K, Tomishige K, Appl. Catal. A: Gen., 318, 252 (2007)
  10. Dong WS, Jun KW, Roh HS, Liu ZW, Park SE, Catal. Lett., 78(1-4), 215 (2002)
  11. Martinez R, Romero E, Guimon C, Bilbao R, Appl. Catal. A: Gen., 274(1-2), 139 (2004)
  12. Roh HS, Jun KW, Dong WS, Chang JS, Park SE, Joe YI, J. Mol. Catal. A: Chem., 18, 137 (2002)
  13. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Park SB, Int. J. Hydrogen Energy., 33, 2036 (2008)
  14. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Bin Park S, Appl. Catal. A: Gen., 340(2), 183 (2008)
  15. Rezaei M, Alavi SM, Sahebdelfar S, Bai P, Liu XM, Yan ZF, Appl. Catal. B: Environ., 77(3-4), 346 (2008)
  16. Ma T, Huang Y, Yang J, He J, Zhao L, Mater. Des., 25, 515 (2004)
  17. Park KT, Jung UH, Choi DW, Chun K, Lee HM, Kim SH, J. Power Sources, 177(2), 247 (2008)
  18. Wei JM, Xu BQ, Li JL, Cheng ZX, Zhu QM, J. Mol.Catal. A: Chem., 196, 167 (2000)
  19. Rouquerol J, Pure Appl. Chem., 66, 1739 (1994)
  20. Sing KSW, Pure Appl. Chem., 57, 603 (1985)
  21. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
  22. Slagtern A, Schuurman Y, Leclercq C, Verykios X, J. Catal., 172(1), 118 (1997)
  23. Gadalla AM, Bower B, Chem. Eng. Sci., 43, 3049 (1988)
  24. Tsang SC, Claridge JB, Green ML, Catal. Today, 23(1), 3 (1995)
  25. Sainchez-Sainchez MC, Int. J. Hydrogen Energy., 32, 1462 (2007)
  26. Hickman DA, Science., 259, 343 (1993)
  27. Trimm DL, Catal. Today, 49(1-3), 3 (1999)