화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.16, No.6, 1025-1032, November, 2010
Studies of carbonaceous species in alkali promoted iron catalysts during Fischer-Tropsch synthesis
E-mail:
The effects of La, Mg and Ca promoters on carbonaceous surface and bulk iron carbide species formed in the alkali promoted iron catalysts are studied under realistic Fischer-Tropsch synthesis (FTS) conditions. Compositions of bulk iron phase and phase transformations of carbonaceous species during pretreatment and FTS reaction were characterized using the temperature-programmed surface reaction with hydrogen (TPSR-H2) and XRD techniques. Many carbonaceous species on surface and bulk were qualitatively and quantitatively identified by combined TPSR-H2 and XRD spectra of the alkali promoted iron catalyst. These species, sorted by the their reactivity with H2 from high to low, were recognized as (a) adsorbed, atomic carbon; (b) amorphous, lightly polymerized hydrocarbon or carbon surface species; (c) bulk carbides and (d) disordered and moderately ordered graphitic surface carbons. The results revealed that while the surface basicity of the iron catalyst increased the CO dissociation proceeds faster than carbon hydrogenation. This phenomenon leads to excessive carbon deposition and formation of inactive iron carbide phases and graphitic type carbonaceous surface species, and consequently leads to catalyst deactivation.
  1. Anderson RB, The Fischer.Tropsch Synthesis, Academic Press, Orlando, FL (1984)
  2. Dry ME, The Fischer.Tropsch synthesis, in: Anderson JR, Boudart M (Eds.), Catalysis-Science and Technology, Springer-Verlag, New York,, 159 (1981)
  3. Bartholomew CH, Recent Developments in Fischer.Tropsch Catalysis, New Trends in CO Activation, Studies in Surface Science and Catalysis, vol. 64, Elsevier, Amsterdam (1991)
  4. Bae JW, Park SJ, Kang SH, Lee YJ, Jun KW, Rhee YW, J. Ind. Eng. Chem., 15(6), 798 (2009)
  5. Van der Laan GP, Beenackers AACM, Catal. Rev.-Sci. Eng., 41(3-4), 255 (1999)
  6. Farrauto RJ, Bartholomew CH, Introduction to Industrial Catalytic Processes, Fundamentals and Practice, Chapman & Hall, London, (Chapter 6) (1997)
  7. Khemthong P, Klysubun W, Prayoonpokarach S, Roessner F, Wittayakun J, J. Ind. Eng. Chem., 16(4), 531 (2010)
  8. Eliason SA, Bartholomew CH, Catalyst Deactivation, in: Bartholomew CH, Fuentes GA (Eds.), Studies in Surface Science and Catalysis, vol. 111, Elsevier, Amsterdam, 517 (1997)
  9. Eliason SA, Bartholomew CH, Appl. Catal. A: Gen., 186(1-2), 229 (1999)
  10. Nakhaei Pour A, Shahri SMK, Zamani Y, Irani M, Tehrani S, J. Nat. Gas. Chem., 17, 242 (2008)
  11. Obrien RJ, Xu LG, Spicer RL, Davis BH, Energy Fuels, 10(4), 921 (1996)
  12. Amelse JA, Butt JB, Scwartz LH, J. Phys. Chem., 82, 558 (1978)
  13. Riede T, Schulz H, Schaub G, Jun KW, Hwang JS, Lee KW, Top. Catal., 26, 41 (2003)
  14. Sarkar A, Seth D, Dozier AK, Neathery JK, Hamdeh HH, Davis BH, Catal. Lett., 117(1-2), 1 (2007)
  15. Emmett PH (Ed.), Crystallite Phase and Their Relationship to Fischer.Tropsch Catalysis, Reinhold, New York, 407 (1956)
  16. Herranz T, Rojas S, Perez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG, J. Catal., 243(1), 199 (2006)
  17. Ning WS, Koizumi N, Chang H, Mochizuki T, Itoh T, Yamada M, Appl. Catal. A: Gen., 312, 35 (2006)
  18. Satlerfield CN, Hanlon RT, Tung SE, Zou Z, Papaefthymiou GC, Ind. Eng. Chem.Prod. Res. Dev., 25, 407 (1986)
  19. Li SZ, O'Brien RJ, Meitzner GD, Hamdeh H, Davis BH, Iglesia E, Appl. Catal. A: Gen., 219(1-2), 215 (2001)
  20. Niemantsverdriet JW, van der Kraan AM, van Dijk WL, van der Baan HS, J. Phys. Chem., 84, 3363 (1980)
  21. Dwyer DJ, Hardenbergh JH, J. Catal., 87, 66 (1984)
  22. Loaiza-Gil A, Fontal B, Rueda F, Mendialdua J, Casanova R, Appl. Catal. A: Gen., 177(2), 193 (1999)
  23. Shroff MD, Kalakkad DS, Coulter KE, Kohler SD, Harrington MS, Jackson NB, Sault AG, Datye AK, J. Catal., 156(2), 185 (1995)
  24. Eliason SA, Bartholomew CH, Stud. Surf. Sci. Catal., 111, 517 (1997)
  25. Xu J, Bartholomew CR, J. Phys. Chem. B, 109(6), 2392 (2005)
  26. Tao Z, Yang Y, Zhang C, Li T, Wang J, Wan H, Xiang H, Li YW, Catal. Comm., 7, 1061 (2006)
  27. Ngantsoue-Hoc W, Zhang YQ, O'Brien RJ, Luo MS, Davis BH, Appl. Catal. A: Gen., 236(1-2), 77 (2002)
  28. Zhang CH, Yang Y, Teng BT, Li TZ, Zheng HY, Xiang HW, Li YW, J. Catal., 237(2), 405 (2006)
  29. Yang Y, Xiang HW, Xu YY, Bai L, Li YW, Appl. Catal. A: Gen., 266(2), 181 (2004)
  30. Pour AN, Shahri SMK, Bozorgzadeh HR, Zamani Y, Tavasoli A, Marvast MA, Appl. Catal. A: Gen., 348(2), 201 (2008)
  31. Nakhaei Pour A, Zamani Y, Tavasoli A, Shahri SMK, Taheri SA, Fuel., 87, 2004 (2008)
  32. Shroff MD, Datye AK, Catal. Lett., 37(1-2), 101 (1996)
  33. Li S, Li A, Krishnamoorthy S, Iglesia E, Catal. Lett., 77(4), 197 (2001)
  34. Obermyer RT, Mulay LN, Lo C, Oskooie-Tabrizi M, Rao VUS, J. Appl. Phys., 53, 3 (1982)
  35. Amelse JA, Butt JB, Schwartz LH, J. Phys. Chem., 82, 558 (1978)
  36. Jung H, Thomson WJ, J. Catal., 134, 654 (1992)
  37. Herranz T, Rojas S, Perez-Alonso FJ, Ojeda A, Terreros P, Fierro JLG, Appl. Catal. A: Gen., 311, 66 (2006)
  38. Eliason SA, Bartholomew CH, in: Bartholomew CH, Butt JB (Eds.), Catalyst Deactivation, Elsevier, Amsterdam, 211 (1991)
  39. Niemantsverdriet JW, van der Kraan AM, J. Catal., 72, 385 (1981)
  40. Bartholomew CH, Catal. Rev.-Sci. Eng., 24, 67 (1982)
  41. Galuszka J, Sano T, Sawicki JA, J. Catal., 136, 96 (1992)
  42. Mehr JY, Jozani KJ, Pour AN, Zamani Y, React. Kinet. Catal. Lett., 75(2), 267 (2002)
  43. Reitmeier RE, Atwood K, Bennet HA, Baugh HM, Ind. Eng. Chem., 40, 620 (1998)