화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.16, No.6, 1050-1058, November, 2010
CaCO3-CO2-H2O system in falling film on a bank of horizontal tubes: Model verification
E-mail:
The purpose of this work is to model the CaCO3-CO2-H2O system in falling film on a bank of horizontal tubes. The model was applied on a 5-effects reference thermal vapor compression multiple-effect distiller (MED-TVC) operating at top brine temperatures (TBT) of 60-70 ℃. The model can predict pH values, CaCO3 deposition and fouling resistance with greater accuracy. Through the MED stages, the HCO3^(-) and CO2 concentrations slightly increased while the CO3 ^(2-) concentration slightly decreased. The pH decreased from 8.8 in the first stage to 8.4 in the 5th stage. The CO2 release rates as well as the CaCO3 deposition rates increase with increasing top brine temperature (TBT). CO2 release rates decrease from 36.4 g/t feed water in the first stage to 32.5 g/t in the last stage. The specific CaCO3 deposition decreases from 127.3 g/t feed water in the first stage to 100.1 g/t in the last stage.
  1. Sheikholeslami R, 1st edition, Fouling in Membranes and Thermal Unites, Balaban Desalination Publication, L’Aquila, Italy (2007)
  2. Al-Rawajfeh AE, Al-Garalleh M, Al-Mazaideh G, Al-Rawashdeh B, Khalil S, Chem. Eng. Commun., 195, 1026 (2008)
  3. Cho K, Chang HK, Kil DS, Kim BG, Jang HD, J. Ind. Eng. Chem., 15(2), 243 (2009)
  4. Cramer SD, The Solubility of Methane, Carbon Dioxide, and Oxygen in Brines from 0 to 300 ℃, US Bureau of Mines Reports of Investigations, 8706 (1982)
  5. Plummer LN, Busenberg E, Geochim. Cosmochim. Acta., 46, 1011 (1982)
  6. Millero FJ, 2nd edition, Chemical Oceanography, CRC Press, Boca Raton (1996)
  7. Al-Rawajfeh AE, Glade H, Ulrich J, Desalination, 156(1-3), 109 (2003)
  8. Ryu HJ, Oh KK, Kim YS, J. Ind. Eng. Chem., 15(4), 471 (2009)
  9. Al-Rawajfeh AE, Glade H, Qiblawey HM, Ulrich J, Desalination, 166(1-3), 41 (2004)
  10. Al-Rawajfeh AE, Glade H, Ulrich J, Desalination, 182(1-3), 209 (2005)
  11. Al-Rawajfeh AE, Desalination, 205(1-3), 124 (2007)
  12. Al-Rawajfeh AE, Chem. Eng. Process., 47(12), 2262 (2008)
  13. Al-Rawajfeh AE, Al-Amaireh MN, Desalin. Water Treat., 7, 191 (2009)
  14. Astarita G, Mass Transfer with Chemical Reaction, Elsevier, Amsterdam (1967)
  15. Astarita G, Savage DW, Bisio A, Gas Treating with Chemical Solvents, Wiley J, New York (1983)
  16. DonneR JH, Fokken J, Boeck K, Glade H, Will S, Desalination, 222(1-3), 626 (2008)
  17. Glade H, Al-Rawajfeh AE, Desalination., 222, 616 (2008)
  18. Lee JY, Kwon TS, Baek K, Yang JW, J. Ind. Eng. Chem., 15(3), 354 (2009)
  19. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, Wiley, New York (1960)
  20. Ratcliff GA, Holdcroft JG, Trans. Inst. Chem. Eng., 41, 315 (1963)
  21. Huang CJ, Kuo CH, AIChE J., 11, 901 (1965)
  22. Millero FJ, Geochim. Cosmochim. Acta., 59, 661 (1995)
  23. Rossum JR, Merrill DT, J. AWWA., 75, 95 (1983)
  24. Snoeyink VL, Jenkins DW, Water Chemistry, John Wiley and Sons, New York (1980)
  25. Chan SH, Ghassemi KF, ASME J. Heat Transfer., 113, 735 (1991)
  26. Chan SH, Ghassemi KF, ASME J. Heat Transfer., 113, 741 (1991)
  27. Stumm W, Morgan JJ, 2nd edition, Aquatic Chemistry. An Introduction Emphasizing Chemical Equilibria in Natural Waters, Wiley J, New York (1981)
  28. Revelle R, Suess H, Tellus., 9, 18 (1957)
  29. Ryznar JW, J. AWWA., 36, 472 (1944)
  30. Mucci A, Am. J. Sci., 283, 780 (1983)
  31. Gal JY, Bollinger JC, Tolosa H, Gache N, Talanta., 43, 1497 (1996)
  32. Greenwald JC, J. Biol. Chem., 141, 789 (1941)
  33. Ellis RD, Glater J, McCutchan JW, Environ. Sci. Technol., 5, 350 (1971)
  34. Hasson D, Perl I, Desalination., 37, 279 (1981)
  35. Sheikholeslami R, Watkinson AP, ASME J. Heat Transfer., 108, 147 (1986)
  36. Al-Rawaifeh AE, Al-Shamaileh EM, Desalination, 206(1-3), 322 (2007)