화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.22, No.4, 317-330, December, 2010
New developments for the mechanical characterization of materials
E-mail:
Rheology as a science of flow of matter is highly influenced by the topology and morphology of the investigated materials, e.g. polymer molecules. Within this publication three current developments will be presented. In the first part, the direct influence of molecular structure on the non-linear mechanical properties and the processing will be presented. In a second part, rheological methods, e.g. elongation rheology or nonlinear shear (especially FT-Rheology) are further developed. Finally the combination of rheological measurements with a second characterization method (NMR, X-ray, dielectric spectroscopy etc.) is described. These new combinations gain unique information about molecular dynamic and structure of time and shear dependant phenomena.
  1. Aarts ACT, van deVen AAF, Continuum Mech. Thermodyn., The occurrence of periodic distortions in the extrusion of polymeric melts, 11, 113 (1999)
  2. Alig I, Skipa T, Lellinger D, Potschke P, Polymer, Destruction and formation of a carbon nanotube network in polymer melts: Rheology and conductivity spectroscopy, 49(16), 3524 (2008)
  3. Anna SL, McKinley GH, Nguyen DA, Sridhar T, Muller SJ, Huang J, James DF, J. Rheol., An interlaboratory comparison of measurements from filament stretching rheometers using common test fluids, 45(1), 83 (2001)
  4. Anna SL, McKinley GH, J. Rheol., Elasto-capillary thinning and breakup of model elastic liquids, 45(1), 115 (2001)
  5. Arda DR, Mackley MR, J. Non-Newton. Fluid Mech., The effect of die exit curvature, die surface roughness and a fluoropolymer additive on sharkskin extrusion instabilities in polyethylene processing, 126(1), 47 (2005)
  6. Ashdown S, Markoviæ I, Ottewill RH, Lindner P, Obertur RC, Rennie AR, Langmuir., Small-angle neutron-scattering studies on ordered polymer colloid dispersions, 6, 303 (1990)
  7. Barone JR, Plucktaveesak N, Wang SQ, J. Rheol., Interfacial molecular instability mechanism for sharkskin phenomenon in capillary extrusion of linear polyethylenes, 42(4), 813 (1998)
  8. Bazilevskii AV, Entov VM, Lerner MM, Rozhkov AN, Polym. Sci. Ser. A., Failure of polymer solution filaments, 39, 316 (1997)
  9. Bazilevskii AV, Entov VM, Rozhkov AN, Proceedings of the 3rd European Rheology Conference., Breakup of an oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions (1990)
  10. Bertola V, Meulenbroek B, Wagner C, Storrn C, Morozov A, van Saarloos W, Bonn D, Phys. Rev. Lett., Experimental evidence for an intrinsic route to polymer melt fracture phenomena: a nonlinear instability of viscoelastic poiseuille flow, 90, 114502 (2003)
  11. Bovey FA, Mirau PA, NMR of Polymers, Academic Press, Inc. (1996)
  12. Callaghan PT, Rep. Prog. Phys., Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids, 62, 599 (1999)
  13. Callaghan PT, Curr.Opin. Coll. & Int. Sci., Rheo-NMR and velocity imaging, 11, 13 (2006)
  14. Callaghan PT, Gil AM, Macromolecules, Rheo-NMR of semidilute polyacrylamide in water, 33(11), 4116 (2000)
  15. Capaccioli S, Prevosto D, Best A, Hanewald A, Pakula T, J. Non-Crystalline Solids., Applications of rheo-dielectric technique, 353, 4267 (2007)
  16. Caputo FE, Burghardt WR, Krishnan K, Bates FS, Lodge TP, Phys. Rev. E., Time-resolved small-angle x-ray scattering measurements of a polymer bicontinuous microemulsion structure factor under shear, 66, 041401 (2002)
  17. Carotenuto C, Grosso M, Maffettone PL, Macromolecules, “Fourier transform rheology of dilute immiscible polymer blends: a novel procedure to probe blend morphology, 41(12), 4492 (2008)
  18. Cogswell FN, J. Non-Newtonian Fluid Mech., Stretching flow instabilities at the exits of extrusion dies, 2, 37 (1977)
  19. Denn MM, Ann. Rev.Fluid Mech., Extrusion instabilities and wall slip, 33, 265 (2001)
  20. Den Doelder CFJ, Koopmans RJ, Molenaar J, Van de Ven AAF, J. Non-Newton. Fluid Mech., Comparing the wall slip and the constitutive approach for modeling spurt instabilities in polymer melt flows, 75(1), 25 (1998)
  21. Dollase T, Graf R, Heuer A, Spiess HW, Macromolecules, Local order and chain dynamics in molten polymer blocks revealed by proton double-quantum NMR, 34(2), 298 (2001)
  22. van Dusschoten D, Wilhelm M, Rheol. Acta, Increased torque transducer sensitivity via oversampling, 40(4), 395 (2001)
  23. van Ekenstein GA, Polushkin E, Nijland H, Ikkala I, ten Brinke G, Macromolecules, Shear alignment at two length scales: combshaped supramolecules self-organized as cylinders-withinlamellar hierarchy, 36(10), 3684 (2003)
  24. Elkissi N, Piau JM, J. Rheol., 38(5), 1447 (1994)
  25. Ewoldt RH, Clasen C, Hosoi AE, McKinley GH, Soft Matter., Rheological fingerprinting of gastropod pedal mucus and synthetic complex fluids for biomimicking adhesive locomotion, 3, 634 (2007)
  26. Filipe S, Vittorias I, Wilhelm M, Macromol. Mat. Eng., Experimental correlation between mechanical non-linearities in LAOS flow and capillary flow instabilities for linear and branched commercial polyethylenes, 293, 57 (2008)
  27. Filipe S, Becker A, Barroso VC, Wilhelm M, Applied Rheology., Evaluation of melt flow instabilities of high-density polyethylenes via an optimised method for detection and analysis of the pressure fluctuations in capillary rheometry, 19, 23345 (2009)
  28. Garcia-Gutierrez MC, Hernandez JJ, Nogales A, Pantine P, Rueda DR, Ezquerra TA, Macromolecules, Influence of shear on the templated crystallization of poly(butyleneterephthalate)/single wall carbon nanotube nanocomposites, 41(3), 844 (2008)
  29. Gaudet S, McKinley GH, Stone HA, Phys. Fluids., Extensional deformation of newtonian liquid bridges, 8, 2568 (1996)
  30. Giacomin AJ, Dealy JM, Large-amplitude oscillatory shear, in Collyer A.A. (Ed.), Techniques in Rheological Measurements, Chapman and Hall, London. (1993)
  31. Halbach K, Permanent magnets for production and use of highenergy particle beams, in: Proceedings of the Eighth International Workshop on Rare Earth Cobalt Permanent Magnets and their Applications, Dayton, Ohio, p. 103. (1985)
  32. Hamley IW, Castelletto V, Paras P, Phys. Rev. E., Small-angle xray scattering study of flow alignment of a thermotropic liquid crystal in the nematic and smectic phases, 74, 020701 (2006)
  33. Hill DA, Hasegawa T, Denn MM, J. Rheol., On the apparent relation between adhesive failure and melt fracture, 34, 891 (1990)
  34. Hilliou L, van Dusschoten D, Wilhelm M, Burhin H, Rodger ER, Rubber Chemistry and Technology., increasing the torque transducer sensitivity of an RPA 2000 by a factor 5 ~ 10 using advanced data acquisition”, 77, 192 (2004)
  35. Hilliou L, Wilhelm M, Yamanoi M, Goncalves MP, Food Hydrocolloids., Structural and mechanical characterization of k/i-hydrid carrageen gels in potassium salt using Fourier Transform rheology, 23, 2322 (2009)
  36. Hofl S, Kremer F, Spiess HW, Wilhelm M, Kahle S, Polymer, Effect of large amplitude oscillatory shear (LAOS) on the dielectric response of 1,4-cis-polyisoprene, 47(20), 7282 (2006)
  37. Hongladarom K, Ugaz VM, Cinader DK, Burghardt WR, Quintana JP, Hsiao BS, Dadmun MD, Hamilton WA, Butler PD, Macromolecules, Birefringence, X-ray scattering, and neutron scattering measurements of molecular orientation in sheared liquid crystal polymer solutions, 29(16), 5346 (1996)
  38. Hyun K, Kim SH, Ahn KH, Lee SJ, J. Non-Newton. Fluid Mech., Large amplitude oscillatory shear as a way to classify the complex fluids, 107(1-3), 51 (2002)
  39. Hyun K, Struth B, Meins T, Wilhelm M, Proceedings of the XV-th International Congress on Rheology., In-situ Rheo-SAXS study of shear induced alignment of liquid crystal (8CB) in the smectic phase under LAOS, 1423-1425. (2008)
  40. Hyun K, Hofl S, Kahle S, Wilhelm M, J. Non-Newton. Fluid Mech., The rheodielectric setup to measure dielectric spectra of 1,4-cis-polyisoprene under large amplitude oscillatory shear (LAOS), 160(2-3), 93 (2009)
  41. Hyun K, Wilhelm M, Macromolecules, Establishing a new nonlinear coefficient Q from FT-Rheology, first investigations on entangled linear and branched Polymer melts, 42(1), 411 (2009)
  42. Kallus S, Willenbacher N, Kirsch S, Distler D, Neidhofer T, Wilhelm M, Spiess HW, Rheol. Acta, Characterization of polymer dispersions by fourier-transform rheology, 40(6), 552 (2001)
  43. Kahle S, Hehn M, Raich HP, Nussbaum W, Blumler P, Wilhelm M, Kautsch. Gummi Kunstst., Combination of NMR relaxometry and mechanical testing during vulcanisation, 61, 92 (2008)
  44. Klein CO, Spiess HW, Calin A, Balan C, Wilhelm M, Macromolecules, Separation of the non-linear oscillatory shear response, into a superposition of linear, strain hardening, strain softening and wall slip response, 40(12), 4250 (2007)
  45. Klein CO, Naue IFC, Nijmann J, Buggisch H, Wilhelm M, Soft Materials., Addition of the force measurment capability to a commercial available extensional rheometer (CaBER), 7, 242 (2009)
  46. Klimke K, Parkinson M, Piel C, Kaminsky W, Spiess HW, Wilhelm M, Macromol. Chem. Phys., Optimisation and application of polyolefin branch quantification by melt-state 13C NMR spectroscopy, 207, 382 (2006)
  47. Kolte MI, Szabo P, J. Rheol., Capillary thinning of polymeric filaments, 43(3), 609 (1999)
  48. Kremer F, Schonhals A, Broadband Dielectric Spectroscopy, Springer, Berlin. (2003)
  49. Krieger IM, Niu TF, Rheol. Acta., A rheometer for oscillatory studies of nonlinear fluids, 12, 567 (1973)
  50. Langela M, Wiesner U, Spiess HW, Wilhelm M, Macromolecules, Microphase reorientation in block copolymer melts as detected via FT rheology and 2D SAXS, 35(8), 3198 (2002)
  51. Larson RG, Rheol. Acta., Instabilities in viscoelastic flows, 31, 213 (1992)
  52. Larson RG, The Structure and Rheology of Complex Fluids, Oxford University Press, New York. (1999)
  53. Laun HM, Schuch H, J. Rheol., Transient elongational viscosities and drawability of polymer melts, 33, 119 (1989)
  54. Legrand F, Piau JM, J. Non-Newton. Fluid Mech., Spatially resolved stress birefringence and flow visualization in the flow instabilities of a polydimethylsiloxane extruded through a slit die, 77(1-2), 123 (1998)
  55. Lim FJ, Schowalter WR, J. Rheol., Wall slip of narrow molecular weight distribution polybutadienes, 33, 1359 (1989)
  56. Lopez-Gonzalez MR, Holmes WM, Callaghan PT, Soft Matter., Rheo-NMR phenomena of wormlike micelles, 2, 855 (2006)
  57. Mackley MR, Rutgers RPG, Gilbert DG, J. Non-Newton. Fluid Mech., Surface instabilities during the extrusion of linear low density polyethylene, 76(1-3), 281 (1998)
  58. Macosko CW, Rheology: Principles, Measurements, and Applications, Wiley-VCH, New York. (1994)
  59. Martins AF, Esnault P, Volino F, Phys. Rev. Lett., Measurement of the viscoelastic coefficients of main-chain nematic polymers by an NMR technique, 57, 1745 (1986)
  60. Matta, JE, Tytus RP, J. Non-Newtonian Fluid Mech., Liquid stretching using a falling cylinder, 35, 215 (1990)
  61. Migler KB, Hervet H, Leger L, Phys. Rev. Lett., Slip transition of a polymer melt under shear stress, 70, 287 (1993)
  62. Migler KB, Qiao F, Flynn K, J. Rheol., Extensional deformation, cohesive failure, and boundary conditions during sharkskin melt fracture, 42, 383 (2002)
  63. Moleenar J, Koopmans RJ, den Doelder CFJ, Phys. Rev. E., Onset of the sharkskin phenomenon in polymer extrusion, 58, 4683 (1998)
  64. Munstedt H, Schmidt M, Wassner E, J. Rheol., Stick and slip phenomena during extrusion of polyethylene melts as investigated by laser-Doppler velocimetry, 44(2), 413 (2000)
  65. Noirez L, Lapp A, Phys. Rev. Lett., Shear flow induced transition from liquid-crystalline to polymer behavior in side-chain liquid crystal polymers, 78, 70 (1997)
  66. Oelschlager C, Gutmann JS, Wolkenhauer M, Spiess HW, Knoll K, Wilhelm M, Macromol. Chem. Phys., Kinetics of shear microphase orientation and reorientation in lamellar diblock and triblock copolymer melts as detected via FT-Rheology and 2D-SAXS, 208, 1719 (2007)
  67. Okamoto S, Saijo K, Hashimoto T, Macromolecules, Real-time SAXS observations of lamella-forming block copolymers under large oscillatory shear deformation, 27(20), 5547 (1994)
  68. Palza H, Naue IFC, Wilhelm M, Macromol. Rapid Commun., In-situ pressure fluctuations of polymer melt instabilities in a viscoelastic poisseule flow: experimental evidence about their origin and dynamics, 30(21), 1799 (2009)
  69. Palza H, Filipe S, Naue IFC, Wilhelm M, Polymer, Correlation between polyethylene topology and melt flow instabilities by determining in-situ pressure fluctuations and applying advanced data analysis, 51(2), 522 (2010)
  70. Panine P, Gradzielski M, Narayanan T, Rev. Sci. Instrum., Combined rheometry and small-angle X-ray scattering, 74, 2451 (2003)
  71. Parkinson M, Klimke K, Spiess HW, Wilhelm M, Macomol. Chem. Phys., Effect of branch length on NMR relaxation properties in molten polyethylene-co-a-olefin model systems, 208, 2128 (2007)
  72. Pollard M, Klimke K, Graf R, Spiess HW, Wilhelm M, Sperber O, Piel C, Kaminsky W, Macromolecules, Observation of chain branching in polyethylene in the solid-state and melt via 13C-NMR spectroscopy and melt NMR relaxation time measurements, 37(3), 813 (2004)
  73. Raich H, Blumler P, Concepts Magn. Reson., “Design and construction of a dipolar Halbach array with a homogeneous eld from identical bar magnets: NMR MANDHALAs”, 23B, 16 (2004)
  74. Rathgeber S, Lee HI, Matyjaszewski K, Di Cola E, Macromolecules, Rheooscillations of a bottlebrush polymer solution due to shear-induced phase transitions between a shear molten state and a line hexatic phase, 40(21), 7680 (2007)
  75. Rutgers R, Mackley M, J. Rheol., The correlation of experimental surface extrusion instabilities with numerically predicted exit surface stress concentrations and melt strength for linear low density polyethylene, 44(6), 1319 (2000)
  76. Rutgers RPG, Mackley MR, J. Non-Newton. Fluid Mech., The effect of channel geometry and wall boundary conditions on the formation of extrusion surface instabilities for LLDPE, 98(2-3), 185 (2001)
  77. Saalwachter K, Heuer A, Macromolecules, Chain dynamics in elastomers as investigated by proton multiple-quantum NMR, 39(9), 3291 (2006)
  78. Safinya CR, Sirota EB, Plano RJ, Phys. Rev. Lett., nematic to smectic A phase transition under shear flow: A nonequilibrium synchrotron X-ray-study, 66, 1986 (1990)
  79. Sattler R, Wagner C, Eggers J, Phys. Rev. Lett., Blistering pattern and formation of nanofibers incapillary thinning of polymer solutions, 100, 164502 (2008)
  80. Schmidt-Rohr K, Spiess HW, Multidimensional solid-state NMR and polymers, Academic Press, London. (1994)
  81. Shore JD, Ronis D, Piche L, Grant M, Phys. Rev. Lett., Model for melt fracture instabilities in the capillary flow of polymer melts, 77, 655 (1996)
  82. Steher M, Brenna G, Yarin AL, Singh RP, Durst F, J. Rheol., Validation and application of a novel elongational device for polymer solutions, 44, 595
  83. Stockmayer WH, Burke JJ, Macromolecules., Dielectric dispersion in branched polypropylene oxide, 2, 647 (1969)
  84. Szabo P, Rheol. Acta, Transient filament stretching rheometer I: Force balance analysis, 36(3), 277 (1997)
  85. Tao ZH, Huang JC, J. Appl. Polym. Sci., Study on the melt fracture of metallocene poly(ethylene-octene) in capillary flow, 98(2), 903 (2005)
  86. McKinley GH, Tripathi A, J. Rheol., How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer, 44(3), 653 (2000)
  87. Tripathi A, Whittingstall P, McKinley GH, Rheol. Acta, Using filament stretching rheometry to predict strand formation and “processability” in adhesives and other non-newtonian fluids, 39(4), 321 (2000)
  88. Venet C, Vergnes B, J. Non-Newton. Fluid Mech., Stress distribution around capillary die exit: an interpretation of the onset of sharkskin defect, 93(1), 117 (2000)
  89. Veron A, Gomes AE, Leal CR, Van Der Klink J, Martins AF, Mol. Cryst. Liq.Cryst., NMR study of flow and viscoelastic properties of PBLG/m-cresol lyotropic liquid crystal, 331, 2359 (1999)
  90. Vittorias I, Parkinson M, Klimke K, Debbaut B, Wilhelm M, Rheol. Acta., Detection and quantification of industrial polyethylene branching topologies via fourier-transform rheology and simulation using the pom-pom model, 46, 321 (2007)
  91. Wang SQ, Adv. Polym. Sci., Molecular transitions and dynamics at polymer /wall interfaces: origins of flow instabilities and wall slip, 138, 227 (1999)
  92. Wang SQ, Drda PA, Macromolecules, “Superfluid-like transition in capillary flow of highly entangled linear polyethylene melts”, 29(7), 2627 (1996)
  93. Wang SQ, Drda P, Macromol. Chem. Phys., Molecular instabilities in capillary flow of polymer melts. Interfacial stick-slip transition, wallslip, and extrudate distortion, 198, 673 (1997)
  94. Watanabe H, Sato T, Hirose M, Osaki K, Yao ML, Rheol. Acta, Rheo-dielectric behavior of low molecular weight liquid crystals. 1. Behavior of nematic 5CB and 7CB, 37(6), 519 (1998)
  95. Watanabe H, Sato T, Hirose M, Osaki K, Yao ML, Rheol. Acta, Rheo-dielectric behavior of low molecular weight liquid crystals. 2. Behavior of 8CB in nematic and smectic states, 38(2), 100 (1999)
  96. Watanabe H, Prog. Polym. Sci., Viscoelasticity and dynamics of entangled polymers, 24, 1253 (1999)
  97. Watanabe H, Matsumiya Y, Kakiuchi M, Aoki Y, Nihon Reoroji Gakkaishi., Rheo-dielectric behavior of carbon black suspensions, 29, 77 (2001)
  98. Watanabe H, Macromol. Rapid Commun., Dielectric relaxation of Type-A polymers in melts and solutions, 22(3), 127 (2001)
  99. Watanabe H, Ishida S, Matsumiya Y, Macromolecules, Rheodielectric behavior of entangled cis-polyisoprene under fast shear, 35(23), 8802 (2002)
  100. Watanabe H, Matsumiya Y, Inoue T, J. Phys.: Condens Matter., “Rheo-dielectrics in oligomeric and polymeric fluids: a review of recent findings, 15, S909 (2003)
  101. Watanabe H, Matsumiya Y, Inoue T, Macromol. Symp., Dielectric and viscoelastic study of entanglement dynamics: A review of recent findings, 228, 51 (2005)
  102. Wilhelm M, Maring D, Spiess HW, Rheol. Acta, Fourier-transform rheology, 37(4), 399 (1998)
  103. Wilhelm M, Reinheimer P, Ortseifer M, Rheol. Acta, High sensitivity fourier-transform rheology, 38(4), 349 (1999)
  104. Wilhelm M, Macromol. Mater. Eng., Fourier-transform rheology, 287, 83 (2002)