Korean Chemical Engineering Research, Vol.48, No.6, 763-767, December, 2010
1-Propanol / CO2 이성분계의 고압 상거동
High-pressure Phase Behavior of 1-propanol / Carbon Dioxide Binary System
E-mail:
초록
본 연구에서는 가변부피 투시셀이 장착된 고압 상평형 장치를 사용하여 초임계 용매인 이산화탄소와 1-propanol의 기액 상평형 거동을 관찰하였다. 이산화탄소와 1-propanol 이성분계에 대하여 온도 305.15 K, 313.15 K, 323.15 K, 333.15 K와 압력 2~11 MPa 범위까지의 실험 결과를 압력-조성(P-x)과 압력-온도(P-T)의 평형 곡선으로 나타내었다. 온도가 증가함에 따라서 혼합물 임계압력도 증가하였고 이산화탄소와 1-propanol계 혼합물의 P-T 곡선은 전형적인 type-II의 유형을 나타내었다. Peng-Robinson 상태방정식을 이용하여 실험 결과를 적합하여 결정한 최적 파라미터 값은 각각 k(ij)=0.116와 η(ij)=-0.065이였으며 Peng-Robinson 상태방정식에 적용하여 계산된 예측치는 실험결과와 비교적 좋은 일치를 보였다.
High-pressure phase behavior for the binary mixture of 1-propanol with supercritical CO2 has been measured by means of a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The equilibrium loci of the pressure - composition and pressure - temperature were obtained for the binary mixture of 1-propanol + CO2 system at 305.15 K, 313.15 K, 323.15 K and 333.15 K, and from 2 MPa to 11 MPa. The critical temperature of the mixture increased with the temperature. The pressure-composition line for the binary mixture of CO2-1-propanol system showed a typical type-II phase behavior. The experimental P-x envelopes were correlated by using the Peng-Robinson equation of state in a satisfactory manner to obtain the parameters with k(ij)=0.116 and η(ij)=-0.065.
- Lee YW, HWAHAK KONGHAK, 41(6), 679 (2003)
- Kim JD, Park JY, Lee YW, Lim JS, Korean Chem. Eng. Res., 42(5), 545 (2004)
- Kang DY, Min BJ, Rho SG, Kang CH, Korean Chem. Eng. Res., 46(5), 958 (2008)
- Subramaniam B, Rajewski RA, Snavely K, J. Pharm. Sci., 86, 885 (1997)
- Shin EK, Oh DJ, Lee BC, Clean Technol., 13(4), 237 (2007)
- Paulaitis ME, “Chemical Engineering at Supercritical Fluid Condition,” Ann Arbor Science, Michigan (1983)
- Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976)
- Poling BE, Prausnitz JM, O’Connel JP, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York (2001)
- Van Konynenburg PH, Scott RL, Philos. Trans. Royal. Soc. London Ser A, 298, 495 (1980)
- Ziegler JW, Dorsey JG, Chester TL, Innis DP, Anal. Chem, 67, 456 (1995)
- Lucien FP, Foster NR, J. Supercrit. Fluids, 17(2), 111 (2000)
- Lu BCY, Zhang D, Pure Appl. Chem., 61, 1065 (1989)
- Cismondi M, Michelsen ML, J. Supercrit. Fluids, 39(3), 287 (2007)
- Yeo SD, Park SJ, Kim JW, Kim JC, J. Chem. Eng. Data, 45, 932 (2000)
- Lam DH, Jangkamolkulchai A, Luks KD, Fluid Phase Equilib, 60, 131 (1990)
- McHugh MA, Krukonis VJ, Supercritical Fluid Extraction : Principles and Practice, 2nd ed., Butterworth-Heinemann, Boston (1994)
- Byun HS, Kim CH, Kwak C, HWAHAK KONGHAK, 30(3), 387 (1992)
- Prausnitz JM, Lichtenthaler RN, De Azervedo EG, Molecular Thermodynamics of Fluid Phase Equilibria, 2nd ed., Prentice-Hall Inc, New Jersey (1987)
- Lee JU, Chung GY, J. Korean Ind. Eng. Chem., 6(5), 819 (1995)
- Byun HS, Yoo KP, Fluid Phase Equilib., 249(1-2), 55 (2006)
- Baker JA, Aust. J. Chem., 6, 207 (1953)
- Aspen Plus User Guide, Version 12.1, Aspentech (2003)