화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.48, No.6, 763-767, December, 2010
1-Propanol / CO2 이성분계의 고압 상거동
High-pressure Phase Behavior of 1-propanol / Carbon Dioxide Binary System
E-mail:
초록
본 연구에서는 가변부피 투시셀이 장착된 고압 상평형 장치를 사용하여 초임계 용매인 이산화탄소와 1-propanol의 기액 상평형 거동을 관찰하였다. 이산화탄소와 1-propanol 이성분계에 대하여 온도 305.15 K, 313.15 K, 323.15 K, 333.15 K와 압력 2~11 MPa 범위까지의 실험 결과를 압력-조성(P-x)과 압력-온도(P-T)의 평형 곡선으로 나타내었다. 온도가 증가함에 따라서 혼합물 임계압력도 증가하였고 이산화탄소와 1-propanol계 혼합물의 P-T 곡선은 전형적인 type-II의 유형을 나타내었다. Peng-Robinson 상태방정식을 이용하여 실험 결과를 적합하여 결정한 최적 파라미터 값은 각각 k(ij)=0.116와 η(ij)=-0.065이였으며 Peng-Robinson 상태방정식에 적용하여 계산된 예측치는 실험결과와 비교적 좋은 일치를 보였다.
High-pressure phase behavior for the binary mixture of 1-propanol with supercritical CO2 has been measured by means of a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The equilibrium loci of the pressure - composition and pressure - temperature were obtained for the binary mixture of 1-propanol + CO2 system at 305.15 K, 313.15 K, 323.15 K and 333.15 K, and from 2 MPa to 11 MPa. The critical temperature of the mixture increased with the temperature. The pressure-composition line for the binary mixture of CO2-1-propanol system showed a typical type-II phase behavior. The experimental P-x envelopes were correlated by using the Peng-Robinson equation of state in a satisfactory manner to obtain the parameters with k(ij)=0.116 and η(ij)=-0.065.
  1. Lee YW, HWAHAK KONGHAK, 41(6), 679 (2003)
  2. Kim JD, Park JY, Lee YW, Lim JS, Korean Chem. Eng. Res., 42(5), 545 (2004)
  3. Kang DY, Min BJ, Rho SG, Kang CH, Korean Chem. Eng. Res., 46(5), 958 (2008)
  4. Subramaniam B, Rajewski RA, Snavely K, J. Pharm. Sci., 86, 885 (1997)
  5. Shin EK, Oh DJ, Lee BC, Clean Technol., 13(4), 237 (2007)
  6. Paulaitis ME, “Chemical Engineering at Supercritical Fluid Condition,” Ann Arbor Science, Michigan (1983)
  7. Peng DY, Robinson DB, Ind. Eng. Chem. Fundam., 15, 59 (1976)
  8. Poling BE, Prausnitz JM, O’Connel JP, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York (2001)
  9. Van Konynenburg PH, Scott RL, Philos. Trans. Royal. Soc. London Ser A, 298, 495 (1980)
  10. Ziegler JW, Dorsey JG, Chester TL, Innis DP, Anal. Chem, 67, 456 (1995)
  11. Lucien FP, Foster NR, J. Supercrit. Fluids, 17(2), 111 (2000)
  12. Lu BCY, Zhang D, Pure Appl. Chem., 61, 1065 (1989)
  13. Cismondi M, Michelsen ML, J. Supercrit. Fluids, 39(3), 287 (2007)
  14. Yeo SD, Park SJ, Kim JW, Kim JC, J. Chem. Eng. Data, 45, 932 (2000)
  15. Lam DH, Jangkamolkulchai A, Luks KD, Fluid Phase Equilib, 60, 131 (1990)
  16. McHugh MA, Krukonis VJ, Supercritical Fluid Extraction : Principles and Practice, 2nd ed., Butterworth-Heinemann, Boston (1994)
  17. Byun HS, Kim CH, Kwak C, HWAHAK KONGHAK, 30(3), 387 (1992)
  18. Prausnitz JM, Lichtenthaler RN, De Azervedo EG, Molecular Thermodynamics of Fluid Phase Equilibria, 2nd ed., Prentice-Hall Inc, New Jersey (1987)
  19. Lee JU, Chung GY, J. Korean Ind. Eng. Chem., 6(5), 819 (1995)
  20. Byun HS, Yoo KP, Fluid Phase Equilib., 249(1-2), 55 (2006)
  21. Baker JA, Aust. J. Chem., 6, 207 (1953)
  22. Aspen Plus User Guide, Version 12.1, Aspentech (2003)