화학공학소재연구정보센터
Macromolecular Research, Vol.18, No.11, 1037-1044, November, 2010
Electrical conduction mechanism of polypyrrole-alginate polymer films
E-mail:
The polypyrrole (PPy) - alginate (Ag) blend films were synthesized using different wt% of Ag and characterized by Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible (UV-vis) spectroscopy. The morphology was examined by transmission electron microscopy (TEM). The electrical conductivity was determined by studying the I-V characteristics at temperatures ranging from 300-500 K. The results are shown by measuring the dependence of the current on the field, temperature, and blending compositions in the form of the I-V characteristics, and the analysis was made by interpretation of the Poole-Frenkel, Schottky ln (J) vs. T plots. For individual polymers, the conduction mechanism was observed to be a Poole-Frenkel type. After the polymer blend was formed, charge conduction appeared to be the Poole-Frenkel mechanism at both lower and higher temperatures. These results suggest that the Pool-Frenkel mechanism is mainly responsible for the observed conduction. The conductivity of the films increased with increasing alginate wt% in the blend and the mobility of the charge carriers increased with increasing alginate wt% concentration in the blend.
  1. Tourillon G, Handbook of Conducting Polymers, New York, Marcel Dekker, 1986, p293.
  2. Scrosati B, Science and Applications of Conducting Polymers, London, Chapman and Hall, 1993, Ch. 7.
  3. Jasne S, Encyclopedia of Polymer Science and Engineering, New York, John Wiley, 1988, p51.
  4. Bockris JO, Miller D, Conducting Polymers: Special Applications, Alcacer L, Ed., Dordrecht, Reidel Publishers, 1989, p1.
  5. Palmisano F, Benedetto GE De, Zambonin CG, Analyst, 122, 365 (1997)
  6. Anuar K, Zarina B, Ekramul HNMM, Proc. Indian Acad. Sci., 114, 155 (2002)
  7. Diaz AF, Kanazawa KK, Gardini GP, J. Chem. Soc.-Chem. Commun., 635 (1979)
  8. Anuar K, Abdullah AH, Idris Z, J. Ultra Sci. Phys. Sci., 12, 2 (2001)
  9. Niwa O, Tamamura T, J. Chem. Soc.-Chem. Commun., 470, 817 (1984)
  10. Otero TF, Sansinena JM, J. Electroanal. Chem., 412(1-2), 109 (1996)
  11. Yan F, Xue G, Chen J, Lu Y, Synth. Met., 123, 17 (2001)
  12. Armes SP, Gottesfeld S, Beery JG, Garzon F, Agnew SF, Polymer, 32, 2325 (1992)
  13. Maeda S, Armes SP, Synth. Met., 73, 151 (1995)
  14. Bhattacharya A, Ganguly KM, De A, Sarkar S, Mater. Res. Bull., 31(5), 527 (1996)
  15. Agag T, Takeichi T, Polymer, 41(19), 7083 (2000)
  16. Fishman ML, Coffin DR, Konstance RP, Carbohydr. Polym., 41, 317 (2000)
  17. Vazquez A, Dominguez V, Kenny JM, J. Thermoplast. Compos., 12, 477 (1999)
  18. Chen XY, Guo QP, Mi YL, J. Appl. Polym. Sci., 69(10), 1891 (1998)
  19. Koenig MF, Huang SJ, Polymer, 36(9), 1877 (1995)
  20. Matzinos P, Tserki V, Kontoyiannis A, Panayiotou C, Polym. Degrad. Stabil., 77, 17 (2002)
  21. Wang H, Sun XZ, Seib P, J. Appl. Polym. Sci., 84(6), 1257 (2002)
  22. Orts WJ, Nobes GAR, Glenn GM, Gray GM, Imam S, Chiou BS, Polym. Adv. Technol., 18, 629 (2007)
  23. Yang J, Yu J, Ma X, Starch/Starke, 58, 580 (2006)
  24. Follain N, Joly C, Dole P, Roge B, Mathlouthi M, Carbohydr. Polym., 63, 400 (2006)
  25. Ma XF, Yu JG, Ma YB, Carbohydr. Polym., 60, 111 (2005)
  26. Saiah R, Sreekumar PA, Leblanc N, Castandet M, Saiter JM, Cereal. Chem., 84, 276 (2007)
  27. Tiwari A, J. Polym. Res., 15, 337 (2008)
  28. Mallik H, Sarkar A, J. Non-Cryst. Solids, 352, 795 (2006)
  29. Bruno FF, Nagarajan R, Roy, Kumar J,Samuelson LA, J. Macromol. Sci. A, 40, 1327 (2003)
  30. Ronald E, Pelrine RD, Jose PJ, Sens. Actuators A-Phys., 64, 77 (1998)
  31. Kurt ID, Gudmund SB, Olav S, Int. J. Biomacromolecules, 21, 47 (1997)
  32. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grondahl L, Biomacromolecules, 8(8), 2533 (2007)
  33. Peter G, Microbiology, 144, 1133 (1998)
  34. Basavaraja C, Pierson R, Vishnuvardhan TK, Huh DS, Eur. Polym. J., 44, 1556 (2008)
  35. Basavaraja C, Veeranagouda Y, Lee K, Pierson R, Huh DS, J. Polym. Sci. B: Polym. Phys., 47(1), 36 (2009)
  36. Basavaraja C, Pierson R, Huh DS, Venkataraman A, Basavaraja S, Macromol. Res., 17(8), 609 (2009)
  37. Basavaraja C, Veeranagouda Y, Lee K, Vishnuvardhan TK, Huh DS, J. Polym. Res., 17, 233 (2010)
  38. Basavaraja C, Kim NR, Jo EA, Huh DS, Macromol. Res., 18(3), 222 (2010)
  39. Basavaraja C, Ri KN, Huh DS, Polym. Compos., 10.1002/pc.20966 (2010)
  40. Liu YC, J. Electroanal. Chem., 571(2), 255 (2004)
  41. Nicho ME, Hu H, Sol. Energy Mater. Sol. Cells, 63, 423 (2000)
  42. Patil SF, Bedekar AG, Agashe C, Mater. Lett., 14, 307 (1992)
  43. Basavaraja C, Choi YM, Park HT, Huh DS, Lee JW, Revanasiddappa M, Raghavendra SC, Khasim S, Vishnuvardha TK, Bull. Korean Chem. Soc., 28, 1104 (2007)
  44. Khare PK, Gaur MS, Indian J. Pure Appl. Phys., 31, 326 (1993)
  45. Schottky W, Z. Phys., 15, 872 (1923)
  46. Pulfrey DL, Shousha AH, Young L, J. Appl. Phys., 41, 2828 (1970)
  47. Hill KM, Philos. Mag. B-Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop., 23, 59 (1971)
  48. Frenkel J, Phys. Rev., 54, 647 (1938)
  49. Ohring M, The Materials Science of Thin Films, Academic Press, San Diego, 1992, Chapter 10.
  50. Taylor DM, Lewis TJ, J. Phys. D-Appl. Phys., 4, 1346 (1971)
  51. Solomon I, Benferhat R, Tran-Quoc H, Phys. Rev. B, 30, 3422 (1984)
  52. Abd El-kader FH, Gaafer SA, Mahmoud KH, Polym. Compos., 30, 214 (2009)
  53. Mort J, Pfister G, Sessler GM, in Electronic Properties of Polymers, Mort J, Pfister G, Eds., Wiley, New York, 1982.
  54. Dwyer OJ, J. Appl. Phys., 37, 2599 (1966)
  55. Joncher AK, Thin Solid Films, 1, 213 (1967)