Macromolecular Research, Vol.18, No.11, 1060-1069, November, 2010
Effects of Copolymerization Temperatures on Structure and Properties of Melt-Spinnable Acrylonitrile-Methyl Acrylate Copolymers and Fibers
E-mail:
A series of 85/15 AN/MA copolymers (acrylonitrile-methyl acrylate copolymers with feed ratio of 85/15 mol%) were synthesized by aqueous precipitation polymerization at 20, 30, and 40 A degrees C, and the copolymers were used to produce a series of fibers by melt spinning. The copolymers and fibers were characterized by element analysis (EA), nuclear magnetic resonance (H-1 NMR and C-13 NMR), capillary rheometry, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electronic microscopy (SEM). The average length of the contiguous AN units synthesized at 30 A degrees C had a maximum value of 10.53. Aqueous polymerization at 30 A degrees C resulted the lowest glass transition temperature (T (g) ) of 87.1 A degrees C, the lowest melting point (T (m) ) of 154.5 A degrees C, and the highest decomposition temperature (T (d) ) of 325.0 A degrees C. 85/15 AN/MA prepared at 20 and 30 A degrees C exhibited a better fluidity at 210 A degrees C. The ideal reaction temperatures for melt processing of the AN/MA copolymers were found to be 20 and 30 A degrees C.
- Sen K, Hajir BS, Bajaj P, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C36, 1 (1996)
- Korte S, “Physical Constants of Poly(acrylonitrile)”, in Polymer Handbook, Brandrup J, Emmergut EH, Grulke EA, Eds., New York, John Wiley, 1999, p59.
- Grassie N, Hay J, McNeill I, J. Appl. Polym. Sci., 56, 189 (1962)
- Mukundan T, Bhanu VA, Wiles KB, Johnson H, Bortner M, Baird DG, Naskar AK, Ogale AA, Edie DD, McGrath JE, Polymer, 47(11), 4163 (2006)
- Suresh KI, Thomas KS, Rao BS, Nair CPR, Polym. Adv. Technol., 19, 831 (2008)
- Smierciak RC, Wardlow JE, Ball LE, WO 9626968 (1996).
- Smierciak RC, Wardlow JE, Ball LE, US 5618901 (1997).
- Hutchinson SR, Tonelli AE, Gupta BS, Buchanan DR, J. Mater. Sci., 43(15), 5143 (2008)
- Bhanu VA, Rangarajan P, Wiles K, Bortner M, Sankarpandian M, Godshall D, Glass TE, Banthia AK, Yang J, Wilkes G, Baird D, McGrath JE, Polymer, 43(18), 4841 (2002)
- Han N, Zhang XX, Wang XC, J. Appl. Polym. Sci., 103(5), 2776 (2007)
- Huang CP, Li WF, Zhou ZH, Acta. Polym. Sin., 2, 118 (1985)
- Dong JZ, Zhao YM, Chen XY, Zeng XM, Technology of synthetic fiber procesiing, Second Edition, China Textile Press Publisher, Beijng, 1994, p 338.
- Flory PJ, Tran. Faraday Soc., 51, 848 (1955)
- Flory PJ, J. Chem. Phys., 17, 223 (1949)
- Rangarajan P, Bhanu VA, Godshall D, Wilkes GL, McGrath JE, Baird DG, Polymer, 43(9), 2699 (2002)
- Rangarajan P, Yang J, Bhanu V, Godshall D, McGrath J, Wilkes G, Baird D, J. Appl. Polym. Sci., 85(1), 69 (2002)
- Godshall D, Rangarajan P, Baird DG, Wilkes GL, Bhanu VA, McGrath JE, Polymer, 44(15), 4221 (2003)
- Randall J, Polymer Sequence Determination, New York, Academic Press, 1977.
- Odian G, Principles of Polymerization, Hoboken New Jersey Wiley-Interscience Press, 2004.
- Minagawa M, Taira T, Yabuta Y, Nozaki K, Yoshii F, Macromolecules, 34(11), 3679 (2001)
- Han N, Zhang XX, E-Polymers, 014 (2009)
- Gupta AK, Paliwal DK, Bajaj P, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C31, 1 (1991)
- Han N, Zhang XX, Wang XC, J. Donghua Univer., 25, 504 (2008)
- Han N, Zhang XX, Wang XC, Wang N, Macromol. Res., 18(2), 144 (2010)
- Frushour B, “Arcylic Polymer Characterization in the Solid State and in Solution”, in Acrylic Fiber Technology and Applications, New York, Marcel Dekker Press, 1995.
- Gupta AK, Singhal RP, J. Polym. Sci. B: Polym. Phys., 21, 2243 (1983)
- Davidson JA, Jung HT, Hudson SD, Percec S, Polymer, 41(9), 3357 (2000)
- Tonelli AE, NMR Spectroscopy and Polymer Microstructure: the Conformational Connection. Methods in Stereochemical Analysis, New York, VCH, 1989.