화학공학소재연구정보센터
Macromolecular Research, Vol.18, No.11, 1060-1069, November, 2010
Effects of Copolymerization Temperatures on Structure and Properties of Melt-Spinnable Acrylonitrile-Methyl Acrylate Copolymers and Fibers
E-mail:
A series of 85/15 AN/MA copolymers (acrylonitrile-methyl acrylate copolymers with feed ratio of 85/15 mol%) were synthesized by aqueous precipitation polymerization at 20, 30, and 40 A degrees C, and the copolymers were used to produce a series of fibers by melt spinning. The copolymers and fibers were characterized by element analysis (EA), nuclear magnetic resonance (H-1 NMR and C-13 NMR), capillary rheometry, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electronic microscopy (SEM). The average length of the contiguous AN units synthesized at 30 A degrees C had a maximum value of 10.53. Aqueous polymerization at 30 A degrees C resulted the lowest glass transition temperature (T (g) ) of 87.1 A degrees C, the lowest melting point (T (m) ) of 154.5 A degrees C, and the highest decomposition temperature (T (d) ) of 325.0 A degrees C. 85/15 AN/MA prepared at 20 and 30 A degrees C exhibited a better fluidity at 210 A degrees C. The ideal reaction temperatures for melt processing of the AN/MA copolymers were found to be 20 and 30 A degrees C.
  1. Sen K, Hajir BS, Bajaj P, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C36, 1 (1996)
  2. Korte S, “Physical Constants of Poly(acrylonitrile)”, in Polymer Handbook, Brandrup J, Emmergut EH, Grulke EA, Eds., New York, John Wiley, 1999, p59.
  3. Grassie N, Hay J, McNeill I, J. Appl. Polym. Sci., 56, 189 (1962)
  4. Mukundan T, Bhanu VA, Wiles KB, Johnson H, Bortner M, Baird DG, Naskar AK, Ogale AA, Edie DD, McGrath JE, Polymer, 47(11), 4163 (2006)
  5. Suresh KI, Thomas KS, Rao BS, Nair CPR, Polym. Adv. Technol., 19, 831 (2008)
  6. Smierciak RC, Wardlow JE, Ball LE, WO 9626968 (1996).
  7. Smierciak RC, Wardlow JE, Ball LE, US 5618901 (1997).
  8. Hutchinson SR, Tonelli AE, Gupta BS, Buchanan DR, J. Mater. Sci., 43(15), 5143 (2008)
  9. Bhanu VA, Rangarajan P, Wiles K, Bortner M, Sankarpandian M, Godshall D, Glass TE, Banthia AK, Yang J, Wilkes G, Baird D, McGrath JE, Polymer, 43(18), 4841 (2002)
  10. Han N, Zhang XX, Wang XC, J. Appl. Polym. Sci., 103(5), 2776 (2007)
  11. Huang CP, Li WF, Zhou ZH, Acta. Polym. Sin., 2, 118 (1985)
  12. Dong JZ, Zhao YM, Chen XY, Zeng XM, Technology of synthetic fiber procesiing, Second Edition, China Textile Press Publisher, Beijng, 1994, p 338.
  13. Flory PJ, Tran. Faraday Soc., 51, 848 (1955)
  14. Flory PJ, J. Chem. Phys., 17, 223 (1949)
  15. Rangarajan P, Bhanu VA, Godshall D, Wilkes GL, McGrath JE, Baird DG, Polymer, 43(9), 2699 (2002)
  16. Rangarajan P, Yang J, Bhanu V, Godshall D, McGrath J, Wilkes G, Baird D, J. Appl. Polym. Sci., 85(1), 69 (2002)
  17. Godshall D, Rangarajan P, Baird DG, Wilkes GL, Bhanu VA, McGrath JE, Polymer, 44(15), 4221 (2003)
  18. Randall J, Polymer Sequence Determination, New York, Academic Press, 1977.
  19. Odian G, Principles of Polymerization, Hoboken New Jersey Wiley-Interscience Press, 2004.
  20. Minagawa M, Taira T, Yabuta Y, Nozaki K, Yoshii F, Macromolecules, 34(11), 3679 (2001)
  21. Han N, Zhang XX, E-Polymers, 014 (2009)
  22. Gupta AK, Paliwal DK, Bajaj P, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C31, 1 (1991)
  23. Han N, Zhang XX, Wang XC, J. Donghua Univer., 25, 504 (2008)
  24. Han N, Zhang XX, Wang XC, Wang N, Macromol. Res., 18(2), 144 (2010)
  25. Frushour B, “Arcylic Polymer Characterization in the Solid State and in Solution”, in Acrylic Fiber Technology and Applications, New York, Marcel Dekker Press, 1995.
  26. Gupta AK, Singhal RP, J. Polym. Sci. B: Polym. Phys., 21, 2243 (1983)
  27. Davidson JA, Jung HT, Hudson SD, Percec S, Polymer, 41(9), 3357 (2000)
  28. Tonelli AE, NMR Spectroscopy and Polymer Microstructure: the Conformational Connection. Methods in Stereochemical Analysis, New York, VCH, 1989.