화학공학소재연구정보센터
Macromolecular Research, Vol.18, No.11, 1081-1087, November, 2010
Thermal and mechanical properties of poly(glycidyl azide)/polycaprolactone copolyol-based energetic thermoplastic polyurethanes
E-mail:
To examine the addition effect of polycaprolactone (PCL) on poly(glycidyl azide) (GAP)-based energetic thermoplastic polyurethanes (ETPUs) (GAP ETPUs), a series of poly(glycidyl azide)/polycarprolactone copolyolbased ETPUs (GAP/PCL ETPUs) with different copolyol wt% ratios was synthesized with 4,4'-diphenylmethane diisocyanate (MDI) and 1,5-pentanediol (1,5-PD) by solution polymerization in dimethyl formamide (DMF). The thermal and mechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and a universal testing machine (UTM). DSC showed that the GAP segment did not interact with the PCL segment and the existence of PCL melting. DMA showed that the presence of a PCL segment in ETPUs improved the storage modulus below the T (m) of the PCL block. UTM revealed improvement in the tensile strength and elongation at breaks of the ETPUs with increasing PCL content. From the above results, this enhancement of the mechanical properties is due to the crystalline PCL segment-induced phase separation. The crystalline PCL segment helps impart extensibility and reinforces the ETPUs in a similar manner as a hard domain.
  1. Eroglu MS, Guven O, Polymer, 39(5), 1173 (1998)
  2. Zheng XD, Qiu SJ, Feng LM, Wang MT, Li HL, Gan XX, Zhang ZH, Polym. Bull., 56(6), 563 (2006)
  3. Consaga JP, French DM, J. Appl. Polym. Sci., 15, 2941 (1971)
  4. Ramesh S, Rajalingam P, Radhakrishnan G, Polym. Int., 25, 253 (1991)
  5. Kethandaraman H, Venkataro K, Thanoo BC, Polym. J., 21, 829 (1989)
  6. Chen JK, Brill TB, Combust. Flame, 87, 217 (1991)
  7. Bui VT, Ahad E, Rheaume D, Raymond MP, J. Appl. Polym. Sci., 62(1), 27 (1996)
  8. Chen FT, Duo YQ, Luo SG, Luo YJ, Tan HM, PROPELLANT-EXPLOS-PYROTECH, 28(1), 7 (2003)
  9. Diaz E, Brousseau P, Ampleman G, Prud'homme RE, PROPELLANT-EXPLOS-PYROTECH, 28(3), 101 (2003)
  10. Frankel MB, Grant LR, Flanagan JE, J. Prop. Power, 8, 560 (1992)
  11. Kubota N, Yano Y, Miyata K, PROPELLANT-EXPLOS-PYROTECH, 16, 287 (1991)
  12. Menke K, Bohnlein-Man BJ, Schubert H, PROPELLANT-EXPLOS-PYROTECH, 21, 139 (1996)
  13. Nakashita G, Kubota N, PROPELLANT-EXPLOS-PYROTECH, 16, 177 (1991)
  14. Kubota N, Sonobe T, Yamamoto A, Shimizu H, J. Prop. Power, 6, 686 (1990)
  15. Oyami Y, Kimura E, Kayakawa S, Nakashita G, Kato K, PROPELLANT-EXPLOS-PYROTECH, 21, 271 (1996)
  16. Kubota N, Sonobe T, PROPELLANT-EXPLOS-PYROTECH, 13, 172 (1988)
  17. Mohan YM, Raju MP, Raju KM, J. Appl. Polym. Sci., 93(5), 2157 (2004)
  18. Stacer RG, Husband DM, PROPELLANT-EXPLOS-PYROTECH, 16, 167 (1991)
  19. Pisharath S, Ang HG, Polym. Degrad. Stabil., 92, 1365 (2007)
  20. Min BS, Ko SW, Macromol. Res., 15(3), 225 (2007)
  21. Wardle RB, US Patent 4,806,613 (1989).
  22. Ahad E, Foy S, US Patent 5,223,056 (1993).
  23. Hong SW, Kim KH, Huh J, Ahn CH, Jo WH, Macromol. Res., 13(5), 397 (2005)
  24. Yoo JS, Kim MS, Lee DS, Kim BS, Kim JH, Macromol. Res., 14(1), 117 (2006)
  25. Sonnenschein MF, Lysenko Z, Brune DA, Wendt BL, Schrock AK, Polymer, 46(23), 10158 (2005)
  26. Hepburn C, Polyurethane Elastomers, Elsevier Science, New York, 1992.
  27. Deanin RD, Polymer structure, properties, and applications, Cahners Books, Boston, 1972.
  28. Camberlin Y, Pascault JP, J. Polym. Sci. B: Polym. Phys., 22, 1835 (1984)
  29. Holden G, Legge HR, Quirk R, Schroeder HE, Thermoplastic Elastomers, Hanser/Gardner Publications, Inc., Cincinnati, 1996.
  30. Fakirov S, Handbook of Condensation Thermoplastic Elastomers, Wiley-VCH Verlag Gmbh & Co. KGaA, Weinheim, 2005.
  31. Korley LTJ, Pate BD, Thomas EL, Hammond PT, Polymer, 47(9), 3073 (2006)