화학공학소재연구정보센터
Combustion and Flame, Vol.157, No.7, 1290-1297, 2010
Multimodal ultrafine particles from pulverized coal combustion in a laboratory scale reactor
Particle size distribution functions have been measured in a ethanol fueled flame reactor fed with a low amount of pulverized coal particles. The reactor is operated in low (5.0 vol.%) and high (76.5 vol.%) oxygen concentrations using two high volatile bituminous Colombian and Indonesian coals. A carbon black powder is also oxidized in the same conditions. Generated particles are sampled using rapid-dilution probes and the size distribution functions are measured on-line by a high resolution Differential Mobility Analyzer. Results clearly show that ultrafine particles, those with sizes lower than 100 nm, have a multimodal size distribution function. These particles have huge number concentrations in both investigated conditions whereas their formation is enhanced in the oxygen enriched condition. Ultrafine particles are almost totally dominated in number by the fraction having sizes below 30 nm. Nanoparticles also account for a significant fraction of total particle mass and slowly coagulate in the reactor. The shape of the size distribution functions is not affected by the coal type, at least for the two investigated coals. Results suggest that ultrafine particles form through the vaporization-nucleation-growth pathway involving inorganic ashes. Moreover the contribution of carbonaceous particles seems particularly important for size smaller than 5 nm. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.