화학공학소재연구정보센터
Computers & Chemical Engineering, Vol.34, No.10, 1655-1661, 2010
Boundary model predictive control of Kuramoto-Sivashinsky equation with input and state constraints
In this work an asymptotic stabilization of highly dissipative Kuramoto-Sivashinsky equation (KSE) by means of boundary model modal predictive control (MMPC) in the presence of input and state constraints is demonstrated. The KS equation is initially defined in an appropriate functional space setting and an exact transformation is used to reformulate the original boundary control problem as an abstract boundary control problem of the KSE partial differential equation (PDE). An appropriate discrete infinite-dimensional representation of the abstract boundary control problem is used for synthesis of low dimensional model modal predictive controller (MMPC) incorporating both the pointwise enforced KSE state constraints and input constraints. The proposed control problem formulation and the performance of the closed-loop system in the full state feedback controller realization have been evaluated through simulations. (C) 2009 Elsevier Ltd. All rights reserved.