Electrochimica Acta, Vol.55, No.15, 4441-4450, 2010
Synthesis of compounds, Li(MMn11/6)O-4 (M = Mn-1/6, Co-1/6, (Co1/12Cr1/12), (Co1/12Al1/12), (Cr1/12Al1/12)) by polymer precursor method and its electrochemical performance for lithium-ion batteries
The compounds, Li(MMn11/6)O-4 (M = Mn-1/6, Co-1/6, (Co1/12Cr1/12). (Co(1/12)A(1/12)). (Cr1/12Al1/12)) are synthesised by the polymer precursor method. The structure and the morphology of the compounds are studied by the Rietveld refined X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques, respectively. Density and the Brunauer, Emmet and Teller surface area (BET) of the compounds are also studied. The cobalt doped compound, Li(Co1/6Mn11/6)O-4 is found to be nanosized particles in the range of 60-100 nm, when compared to the other compounds in our present study. The oxidation state and the local structure of the compounds are analysed by the X-ray absorption spectroscopy (XAS) technique Cyclic voltammetry (CV) and the galvanostatic charge-discharge cycling (30 mA g(-1)) studies are made in the voltage range of 3 5-4 3 Vat room temperature for all the compounds under study. The bare and (Co-1/6), and (Co1/12Cr1/12) substituted spinels are cycled at high current rates of 1, 2 and 5C (assuming 1C similar to 120 mA g(-1)) Cycling results of Co-substituted spinels show better and long-term capacity retention at all the current rates. At the end of the second cycle, Li(Co1/6Mn11/6)O-4 compound delivers a discharge capacity value of 100 (+/- 3) and 87 (+/- 3) mAh g(-1) for the current rate of 2 and 5C, respectively. An excellent capacity retention value of 94% is observed at the end of the 1000 cycles for both 2 and 5C rates. (C) 2010 Elsevier Ltd. All rights reserved
Keywords:Doped LiMn2O4;Cycling stability;Cathodes;X-ray absorption fine structure;Electrochemical properties;Lithium batteries