Electrophoresis, Vol.31, No.19, 3200-3206, 2010
Naphthyl methacrylate-phenylene diacrylate-based monolithic column for reversed-phase capillary electrochromatography via hydrophobic and pi interactions
A neutral naphthyl methacrylate-phenylene diacrylate-based monolith (NPM) was introduced for RP-CEC of various neutral and charged solute probes via hydrophobic and it interactions. The NPM column was prepared by the in situ polymerization of naphthyl methacrylate as the functional monomer and 1,4-phenylene diacrylate (PDA) as the crosslinker in a ternary porogenic solvent containing cyclohexanol, dodecanol and water. The NPM column exhibited cathodal EOF despite the fact that it was devoid of any fixed charges. NPM exhibited stronger EOF than its counterpart naphthyl methacrylate monolith (NMM) made from the in situ polymerization of naphthyl methacrylate and trimethylolpropane trimethacrylate (TRIM). As for NMM, it is believed that the EOF arises from the adsorption of mobile phase ions onto the monolith surface. The higher EOF exhibited by NPM may be attributed to the acrylate nature of PDA as compared to the methacrylate nature of TRIM, and therefore PDA has a higher binding capacity for mobile phase ions due to its higher polarity than TRIM. The adsorption of mobile phase ions together with the additional it interactions offered by the aromatic rings of the NPM matrix modulated solute retention and separation selectivity. The applications of NPM were demonstrated by the separation of a wide range of small and large solutes including peptides, tryptic peptide maps and proteins.
Keywords:CEC;Naphthyl methacrylate-phenylene acrylate-based monolith;Peptides;Proteins;Structural Isomers