화학공학소재연구정보센터
Energy Policy, Vol.38, No.2, 1177-1191, 2010
The role of carbon capture technologies in greenhouse gas emissions-reduction models: A parametric study for the US power sector
This paper analyzes the potential contribution of carbon capture and storage (CCS) technologies to greenhouse gas emissions reductions in the U.S. electricity sector. Focusing on capture systems for coal-fired power plants until 2030, a sensitivity analysis of key CCS parameters is performed to gain insight into the role that CCS can play in future mitigation scenarios and to explore implications of large-scale CCS deployment. By integrating important parameters for CCS technologies into a carbon-abatement model similar to the EPRI Prism analysis (EPRI, 2007), this study concludes that the start time and rate of technology diffusion are important in determining emissions reductions and fuel consumption for CCS technologies. Comparisons with legislative emissions targets illustrate that CCS alone is very unlikely to meet reduction targets for the electric-power sector, even under aggressive deployment scenarios. A portfolio of supply and demand-side strategies is needed to reach emissions objectives, especially in the near term. Furthermore, model results show that the breakdown of capture technologies does not have a significant influence on potential emissions reductions. However, the level of CCS retrofits at existing plants and the eligibility of CCS for new subcritical plants have large effects on the extent of greenhouse gas emissions reductions. (C) 2009 Elsevier Ltd. All rights reserved.