화학공학소재연구정보센터
Polymer(Korea), Vol.35, No.1, 30-34, January, 2011
전자선 가교된 유리섬유 강화 나일론 12의 열적 거동 및 내마모 특성
Thermal Behavior and Abrasion Properties of Glass Fiber Reinforced Nylon 12 Crosslinked by Electron Beam Irradiation
E-mail:
초록
나일론 12의 열적 거동 및 내마모 특성을 확인하기 위해서 100∼600 kGy로 조사선량을 달리 하여 전자선가교 반응을 진행하였다. 가교효과를 증대시키기 위해서 TAC, TAIC, TMPTMA의 가교제를 추가로 사용하였다. 나일론 12는 200 kGy 이상 전자선 가교가 진행되어야 높은 젤화율을 보이며, 조사선량이 증가할수록 결정성이 낮아져 Tm과 DSC 피크 면적이 서서히 감소되는 것을 확인하였고, 또한 열분해 온도가 상승하여 열적 안정성이 우수해짐을 확인하였다. 그리고 나일론 12의 내마모 특성도 향상되어 가교 전과 비교하였을 때 마모량, 마모계수가 감소하는 경향을 나타내었고, 마모 표면을 SEM 분석을 통해서 확인하였다. 나일론 12에 첨가된 가교제는 전자선 가교시 우수한 가교 효과를 나타내며, 열적, 내마모 특성을 향상시키는 것으로 확인되었다.
In this study, the effects of the electron beam irradiation on the thermal behavior and the abrasion properties of the glass fiber reinforced nylon 12 was investigated. The electron beam irradiation was carried out over a range of irradiation dose from 100 to 600 kGy with additive crosslinking agents such as triallyl cyanurate (TAC), triallyl isocyanurate (TAIC) and trimethylolpropane trimethacrylate (TMPTMA) for enhancing the crosslinking effects. The gel contents were increased dramatically above 200 kGy. It was verified that the degree of crosslinking depends on the radiation dose. The decreases of the melting temperature and the area of endothermic peak were observed as increasing the absorbed dose in the results of DSC analysis. The enhanced thermal stability was confirmed by the increases of decomposition temperature by electron beam irradiation. Furthermore, the negative deviations of the abrasion loss and the abrasion coefficients confirmed the improvement of the abrasion properties of irradiated nylon 12, as evidenced by SEM observation on the abrasion surfaces. The addition of the crosslinking agents to nylon 12 during effectively improved the thermal behavior and the abrasion properties of nylon 12 by the electron beam irradiation.
  1. Chung DW, Kang SC, Polym.(Korea), 29(1), 14 (2005)
  2. Kang SC, Chung DW, Trans. Korean. Soc. Mech. Eng.A., 10, 142 (2002)
  3. Pinto C, Andrade e Silva LG, Radit. Phys. Chem., 76, 1708 (2007)
  4. Ferro WP, Andrade e Silva LG, Radit. Phys. Chem., 71, 269 (2004)
  5. McFerran NLA, Armstrong CG, McNally T, J. Appl. Polym. Sci., 110(2), 1043 (2008)
  6. Fresko DG, Polym. Eng. Sci., 17, 242 (1977)
  7. Glauser T, Johansson M, Hult A, Polymer., 40, 5297 (2000)
  8. Crivello JV, Walton TC, Malik R, Chem. Mater., 9, 1273 (1997)
  9. Birkinshaw C, Buggy M, Daly S, Mater. Chem. Phys., 17, 239 (1987)
  10. Pramanik NK, Haldar RS, Bhardwaj YK, Sabharwal S, Niyogi UK, Khandal RK, Radit. Phys. Chem., 78, 199 (2009)
  11. Sengupta R, Tikku VK, Somani AK, Chaki TK, Bhowmick AK, Radit. Phys. Chem., 72, 625 (2005)
  12. Graves CT, Ormerod MG, Polymer., 4, 81 (1963)
  13. Feng W, Hu FM, Yuan LH, Zhou Y, Zhou YY, Radit. Phys. Chem., 63, 493 (2002)
  14. Zimmerman J, J. Appl. Polym. Sci., 2, 181 (1959)
  15. Zimmerman J, J. Polym. Sci., 46, 151 (1960)
  16. Sophiem R, Nucl. Instrum. Meth. B,., 236, 68 (2005)
  17. Kim YH, Lee KH, Korean J. Mater. Res., 9, 392 (1999)
  18. Lee TW, Choi JU, Kang KM, Korean J. Mater.Res., 15, 824 (2005)
  19. Park SJ, Im SH, Lee JR, Rhee JM, Polym.(Korea), 30(5), 385 (2006)