Korean Chemical Engineering Research, Vol.49, No.1, 21-27, February, 2011
메탄올 수증기 개질반응에서의 상용촉매 비교연구
A Comparative Study of Commercial Catalysts for Methanol Steam Reforming
E-mail:
초록
메탄올 수증기 개질반응에 대한 적용가능성을 파악하기 위하여 메탄올 합성용 촉매인 ICI-M45와 수성가스 전환반 응용 촉매인 MDC-3와 MDC-7을 비교 연구하였다. 또한 수성가스전환 반응에 대한 세 촉매의 비교실험도 수행하였다. 그 결과 MDC-7이 메탄올 수증기 개질반응에서 가장 높은 전화율을 보였으며, H2와 CO2 생성속도 또한 높게 나타났다. 수성가스 전환반응용 촉매인 MDC-7과 메탄올 합성촉매인 ICI-M45를 이용하여 촉매 충진 방법에 따른 메탄올의 전화율에서의 변화를 살펴본 결과, MDC-7 단독보다 낮은 메탄올의 전화율을 보였다. 수성가스 전환반응에서도 MDC-7, MDC-3, 그리고 ICI-M45의 순으로 반응성이 감소하였다. 상기 두 반응에서 MDC-7이 가장 우수한 이유로는 높은 비표면적과 Cu의 분산도, 그리고 적절한 Cu와 Zn의 비율에 기인함을 확인할 수 있었다.
The comparison work was conducted for the methanol steam reforming among commercial Cu-based catalysts, viz. ICI-M45, which is for the methanol synthesis, MDC-3 and MDC-7, which are for the water-gas shift reaction. The catalytic activity for the water-gas shift reaction was also compared over three catalysts. Among them, MDC-7 showed the highest methanol conversion and formation rate of hydrogen and carbon dioxide at 473 K for the methanol steam reforming. To find out any promotional effect between ICI-M45 and MDC-7, three different packing methods with these two catalysts were examined. However, no synergistic effect was observed. The catalytic activity for watergas shift reaction decreased in the following order: MDC-7 > MDC-3 > ICI-M45. The highest activity of MDC-7 for the methanol steam reforming as well as the water-gas shift reaction can be due to its high surface area, copper dispersion, and an adequate Cu/Zn ratio.
- Matsumura Y, Ishibe H, Appl. Catal. B: Environ., 91(1-2), 524 (2009)
- Sa S, Silva H, Brandao L, Sousa JM, Mendes A, Appl. Catal. B: Environ., In Press.
- Meshkini F, Taghizadeh M, Bahmani M, Fuel, 89, 170 (2010)
- Peppley BA, Amphlett JC, Kearns LM, Mann RF, Appl. Catal. A: Gen., 179(1-2), 31 (1999)
- Saito M, Murata K, Catal. Surv. Asia, 8, 285 (2004)
- Lee JW, Jeon HJ, Hong SC, Clean Technol., 15(2), 130 (2009)
- Figueiredo RT, Andrade HMC, Fierro JLG, J. Mol. Catal. A: Chem., 318, 15 (2010)
- Kurr P, Kasatkin I, Girgsdies F, Trunschke A, Schlogl R, Ressler T, Appl. Catal. A: Gen., 348(2), 153 (2008)
- Henpraserttae S, Limthongkul P, Toochinda P, Monatsh Chem., 141, 269 (2010)
- Chen WH, Lin BJ, Int. J. Hydrog. Energy, 35, 1987 (2010)
- Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Catal. A: Gen., 337(1), 48 (2008)
- Evans JW, Wainwright MS, Bridgewater AJ, Young DJ, Appl. Catal., 7, 75 (1983)
- Jones SD, Neal LM, Hagelin-Weaver HE, Appl. Catal. B: Environ., 84(3-4), 631 (2008)
- Lindstrom B, Pettersson LJ, Menon PG, Appl. Catal. A: Gen., 234(1-2), 111 (2002)
- Shen JP, Song CS, Catal. Today, 77(1-2), 89 (2002)
- Breen JP, Ross JRH, Catal. Today, 51(3-4), 521 (1999)
- Zhang XR, Wang LC, Yao CZ, Cao Y, Dai WL, He HY, Fan KN, Catal. Lett., 102(3-4), 183 (2005)
- Agarwal V, Patel S, Pant KK, Appl. Catal. A: Gen., 279(1-2), 155 (2005)
- Alejo L, Lago R, Pena MA, Fierro JL, Appl. Catal. A: Gen., 162(1-2), 281 (1997)
- Huang G, Liaw BJ, Jhang CJ, Chen YZ, Appl. Catal. A: Gen., 358(1), 7 (2009)
- Huang TJ, Wang SW, Appl. Catal., 24, 287 (1986)
- Wang Z, Wang W, Lu G, Int. J. Hydrog. Energy, 28, 151 (2003)
- Seong KH, Master Dissertation, Korea Advanced Institute of Science and Technology, Daejeon (1996)
- Kudo S, Maki T, Miura K, Mae K, Carbon, 48, 1186 (2010)
- Takeguchi T, Kani Y, Inoue M, Eguchi K, Catal. Lett., 83(1-2), 49 (2002)
- Wang LC, Liu YM, Chen M, Cao Y, He HY, Wu GS, Dai WL, Fan KN, J. Catal., 246(1), 193 (2007)
- Kam R, Selomulya C, Amal R, Scott J, J. Catal., 273, 73 (2010)
- Shishido T, Yamamoto M, Li DL, Tian Y, Morioka H, Honda M, Sano T, Takehira K, Appl. Catal. A: Gen., 303(1), 62 (2006)