화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.22, No.1, 98-103, February, 2011
백금/니켈 전기 도금 상대전극을 사용한 염료 감응형 태양전지 광전 변환 효율 특성
Photovoltaic Efficiency Characteristics of DSSC with Electroplated Pt/Ni Counter Electrode
E-mail:
초록
DSSC의 광전 효율 증대와 Pt 상대전극의 접착성 향상을 위하여 FTO (Fluorine-doped Tin Oxide) 유리면에 Ni underlayer를 전기 도금 후 Pt 층을 전기 도금하였다. Ni underlayer는 10 mA/cm2에서 2 min 동안 도금한 경우 Ni 층과 FTO 면 사이의 접착성이 가장 우수하게 나타났으며, Ni underlayer를 10 mA/cm2에서 2 min, Pt 층을 5 mA/cm2에서 1 min 동안 전기 도금한 상대전극의 XRD 분석 결과 Ni 및 Pt의 금속 회절 peak들을 관찰 할 수 있었다. 이렇게 제조한 상대전극을 사용하여 DSSC의 impedance 측정 결과 75 ohm의 가장 낮은 저항을 나타냈으며, 광전 효율은 5.6%로서 가장 높은 값을 나타내었다.
We prepared a counter electrode by electroplating Ni as underlayer and Pt as plating layer on the FTO glass to increase the efficiency of dye-sensitized solar cell (DSSC). We found an excellent adhesion between Ni underlayer and FTO glass when Ni underlayer was electroplated at 10 mA/cm2 for 2 min on FTO glass. We observed Ni and Pt metal diffraction peaks by XRD analysis when Ni underlayer was electroplated at 10 mA/cm2 for 2 min, and Pt layer was electroplated at 5 mA/cm2 for 1 min on the Ni underlayer. Photovoltaic performance and impedance analysis of DSSCs fabricated with this counter electrode shows the highest efficiency of 5.6% and the lowest resistance of 75 ohm.
  1. Jung SH, Hwang KJ, Kang SW, Jeong HG, Kim SI, Lee JW, J. Korean Ind. Eng. Chem., 20(2), 227 (2009)
  2. O’Reagan B, Grazel M, Nature., 335, 739 (1991)
  3. Hong W, Xu Y, Lu G, Li C, Shi G, Electrochem. Commun., 10, 1555 (2008)
  4. Huang Z, Liu X, Li K, Li D, Luo Y, Li H, Song W, Chen L, Meng Q, Electrochem. Commun., 9, 596 (2007)
  5. Ramasamy E, Lee WJ, Lee DY, Song JS, Electrochem. Commun., 10, 1087 (2008)
  6. Wu JH, Li QH, Fan LQ, Lan Z, Li PJ, Lin JM, Hao SC, J. Power Sources, 181(1), 172 (2008)
  7. Hwang KS, Ha KR, Appl. Chem. Eng., 21(4), 405 (2010)
  8. Yoon CH, Vittal R, Lee J, Chae WS, Kim KJ, Electrochim. Acta, 53(6), 2890 (2008)
  9. Li PJ, Wu JH, Lin JM, Huang ML, Lan Z, Li QH, Electrochim. Acta, 53(12), 4161 (2008)
  10. Kim SS, Park KW, Yum JH, Sung YE, Sol. Energy Mater. Sol. Cells., 90, 283 (2006)
  11. Kontos AI, Kontos AG, Tsoukleris DS, Bernard MC, Spyrellis N, Falaras P, J. Mat. Proc. Tech., 196, 243 (2008)
  12. Yoon JH, Jang SR, Vittal R, Lee J, Kim KJ, J.Photochem. Photobio. A: Chemistry., 180, 184 (2006)
  13. Gagliardi S, Giorgi L, Giorgi R, Lisi N, Makris TD, Salenitano E, Rufoloni A, Superlattices Microstruct., 46, 205 (2009)
  14. Kalaignan GP, Kang MS, Kang YS, Solid State Ion., 177(11-12), 1091 (2006)
  15. Chen DH, Hsieh CH, J. Mater. Chem., 12, 2415 (2002)
  16. Kumar S, Kumar S, Chakarvarti SK, J. Mater. Sci., 39(9), 3249 (2004)
  17. Wakayama H, Fukushima Y, Ind. Eng. Chem. Res., 39(12), 4641 (2000)