Korean Journal of Chemical Engineering, Vol.28, No.3, 954-963, March, 2011
Dynamic-mechanical behavior of polyethylenes and ethene/α-olefin-copolymers: Part II. α- and β-relaxation
E-mail:
Several ethylene homopolymers and ethene/α-olefin-copolymers with crystallinities ranging between 85 and 12% were characterized by dynamic-mechanical measurements. The occurring relaxations were correlated to the crystallinity of the polymeric materials and to morphology. The α-relaxation, being attributed to interlamellar shear, was found to be around 60 oC with activation energies of about 120 kJ/mol in samples with more than 42% crystallinity. The β-transition shows a much greater variety among the different samples characterized. Its relaxation temperatures
vary between .40 and 10 oC with activation energies between 200 and 400 kJ/mol. The α- and β-relaxation of several quenched samples with crystallinities between 63 and 42% were found to overlap, thus producing bimodal maxima and different activation energies from the Arrhenius plots. A separation of these overlapping relaxations was only possible by measuring the relaxations over a frequency range of more than three orders of magnitude.
Keywords:Polyethylene;Ethene-/α-olefin-copolymer;Dynamic-mechanical Properties;Activation Energy;α-Relaxation;β-Relaxation
- Bensason S, Nazarenko S, Chum S, Hiltner A, Baer E, Polymer, 38(14), 3513 (1997)
- Hartwig G, Polymer Properties at Room and Cryogenic Temperatures, New Yorkm Plenum Press (1994)
- Nitta KH, Tanaka A, Polymer, 42(3), 1219 (2001)
- Boyd RH, Polymer., 26, 1123 (1985)
- Boyd RH, Polymer., 26, 323 (1985)
- Popli R, Glotin M, Mandelkern L, Benson RS, J. Polym. Sci. Part B: Polym. Phys., 22, 407 (1983)
- Stadler FJ, Kaschta J, Munstedt H, Polymer, DOI: 10.1016/j.polymer.2005.07.099, 46(23), 10311 (2005)
- Liu JP, Zhang FJ, Xie FC, Du BY, Fu Q, He TB, Polymer, 42(12), 5449 (2001)
- Stadler FJ, Takahashi T, Yonetake K, e-Polymers., 40 (2009)
- Stadler FJ, Takahashi T, Yonetake K, e-Polymers., 41 (2009)
- Sirotkin RO, Brooks NW, Polymer, 42(24), 9801 (2001)
- Matthews RG, Unwin AP, Ward IM, Capaccio G, Journal of Macromolecular Science-Physics., B38, 123 (1999)
- Mandelkern L, The crystalline state, 2nd Ed., Chap. 4. Washington DC, ACS (1993)
- Stadler FJ, Muenstedt H, J. Rheol., DOI: 10.1122/ 1.2892039, 52(3), 697 (2008)
- Stadler FJ, Piel C, Kaschta J, Rulhoff S, Kaminsky W, Munstedt H, Rheol. Acta, DOI: 10.1007/s00397-005-0042-6, 45(5), 755 (2006)
- Stadler FJ, Piel C, Kaminsky W, Munstedt H, Macromolecular Symposia., DOI: 10.1002/masy.200650426, 236, 209 (2006)
- Gabriel C, Munstedt H, Rheol. Acta, 41(3), 232 (2002)
- Piel C, Stadler FJ, Kaschta J, Rulhoff S, Munstedt H, Kaminsky W, Macromol. Chem. Phys., DOI: 10.1002/macp. 200500321, 207, 26 (2006)
- Stadler FJ, Piel C, Klimke K, Kaschta J, Parkinson M, Wilhelmt M, Kaminsky W, Munstedt H, Macromolecules, DOI: 10.1021/ma0514018, 39(4), 1474 (2006)
- Graessley WW, Roovers J, Macromolecules., 12, 959 (1979)
- Roovers J, Graessley WW, Macromolecules., 14, 766 (1981)
- Godehardt R, Rudolph S, Lebek W, Goerlitz S, Adhikari R, Allert E, Giesemann J, Michler GH, J. Macromol. Sci. Phys., B38(5-6), 817 (1999)
- Adhikari R, Godehardt R, Lebek W, Frangov S, Michler GH, Radusch H, Calleja FJB, Polym. Adv. Technol., 16(2-3), 256 (2005)
- Rojas G, Berda EB, Wagener KB, Polymer, DOI 10.1016/j.polymer.2008.03.029, 49(13-14), 2985 (2008)
- Glowinkowski S, Makrocka-Rydzyk M, Wanke S, Jurga S, European Polym. J., 38, 961 (2002)
- Mader D, Heinemann J, Walter P, Mulhaupt R, Macromolecules, 33(4), 1254 (2000)
- Starck P, Lofgren B, European Polym. J., 38, 97 (2002)
- Dechter JJ, Axelson DE, Dekmezian A, Glotin M, Mandelkern L, J. Polym. Sci. Part B: Polym. Phys., 20, 641 (1982)
- The interfacial regime is believed to be a rather thin layer on the border between the crystal lamellae and the amorphous regime.
- Resch JA, Stadler FJ, Kaschta J, Munstedt H, Macromolecules, DOI: 10.1021/ma9008719, 42(15), 5676 (2009)
- Keßner U, Munstedt H, Kaschta J, Stadler FJ, Le Duff CS, Drooghaag X, Macromolecules., In press, DOI: 10.1021/ma100705f (2010)
- Chen X, Stadler FJ, Munstedt H, Larson RG, J. Rheol., 54(2), 393 (2010)
- KeBner U, Munstedt H, Kaschta J, Stadler FJ, Le Duff CS, Drooghaag X, Macromolecules., DOI: 10.1021/ma100705f, 41(17), 7341 (2010)
- Stadler FJ, Nishioka A, Stange J, Koyama K, Munstedt H, Rheol. Acta, DOI: 10.1007/s00397-007-0190-y, 46(7), 1003 (2007)
- Stadler FJ, Gabriel C, Munstedt H, Macromol. Chem. Phys., DOI: 10.1002/macp.200700267, 208, 2449 (2007)
- In other words, the material behaves thermorheologically complex, as several processes with different activation energies overlap each other. Thus, no master curve can be constructed, but instead a discussion about the relaxation time dependent activation energy would have to be conducted [30,33]. However, this complicated method does not have to be conducted, as E'' is a clearly separable peak, whose activation energy can, therefore, be determined with relative ease from the peak temperature.
- Determined as the difference quotient.
- Piel C, Starck P, Seppala JV, Kaminsky W, J. Polym. Sci. A: Polym. Chem., 44(5), 1600 (2006)
- This value was adopted, as it is approximately the mean of the crystallinity of the neighboring samples.
- Piel C, Polymerizations of Ethene and Ethene-co-alpha-Olefin: Investigations on Short- and Long-Chain Branching and Structure Property Relationships. Department of Technical and Macromolecular Chemistry, Vol. Ph. D. Hamburg: University of Hamburg (2005)
- Piel C, Scharlach K, Kaminsky W, Macromolecular Symposia., 226, 25 (2005)