화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.38, No.10, 3793-3801, 1999
Catalytic oxidation of phenol over MnO2 in supercritical water
Bulk MnO2 was used as a catalyst for phenol oxidation in supercritical water at 380-420 degrees C and 219-300 atm in a flow reactor. The bulk MnO2 catalyst enhances both the phenol disappearance and CO2 formation rates during supercritical water oxidation (SCWO), but it does not affect the selectivity to CO2 or to the phenol dimers at a given phenol conversion. The role of the catalyst appears to be accelerating the rate of formation of phenoxy radicals, which then react in the fluid phase by the same mechanism operative for noncatalytic SCWO of phenol. The rates of phenol disappearance and CO2 formation are sensitive to the phenol and Oz concentrations but independent of the water density. Both power-law and dual site Langmuir-Hinshelwood-Hougen-Watson (LHHW) rate laws were developed to correlate the catalytic kinetics. Our results show that SCWO reactor volumes can be reduced by an order of magnitude if bulk MnO2 is used as the catalyst and by yet another order of magnitude if a supported oxidation catalyst is used.