화학공학소재연구정보센터
Fuel Processing Technology, Vol.92, No.3, 385-393, 2011
Fluid dynamic simulation in a chemical looping combustion with two interconnected fluidized beds
Flow behavior of gas and particles is simulated in a 2-D chemical-looping combustion (CLC) process with two interconnected fluidized beds. A Eulerian continuum two-fluid model is applied for both the gas phase and the solid phase. Gas turbulence is modeled by using a k-epsilon turbulent model. The kinetic stress is modeled using the kinetic theory of granular flow, while the friction stress is from the combination of the normal frictional stress model proposed by Johnson and Jackson (1987) and the frictional shear viscosity model proposed by Schaeffer (1987) to account for strain rate fluctuations and slow relaxation of the assembly to the yield surface. Instantaneous and local velocity, concentration of particles and granular temperature are obtained. Predicted time-averaged particle concentrations and velocities reflect the classical core-annular flow structure in the air reactor. Flow behavior of bubbles is predicted in the fuel reactor and pot-seal. Computed leakage qualitatively agrees with experimental data in the fuel reactor and pot-seal. (C) 2010 Elsevier B.V. All rights reserved.