화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.55, No.5, 1213-1219, 2010
State Estimation and Sliding-Mode Control of Markovian Jump Singular Systems
This paper is concerned with the state estimation and sliding-mode control problems for continuous-time Markovian jump singular systems with unmeasured states. Firstly, a new necessary and sufficient condition is proposed in terms of strict linear matrix inequality (LMI), which guarantees the stochastic admissibility of the unforced Markovian jump singular system. Then, the sliding-mode control problem is considered by designing an integral sliding surface function. An observer is designed to estimate the system states, and a sliding-mode control scheme is synthesized for the reaching motion based on the state estimates. It is shown that the sliding mode in the estimation space can be attained in a finite time. Some conditions for the stochastic admissibility of the overall closed-loop system are derived. Finally, a numerical example is provided to illustrate the effectiveness of the proposed theory.