Journal of Applied Polymer Science, Vol.117, No.3, 1813-1819, 2010
Hydrogel-MWCNT Nanocomposites: Synthesis, Characterization, and Heating with Radiofrequency Fields
Hydrogel nanocomposites are attractive biomaterials for numerous applications including tissue engineering, drug delivery, cancer treatment, sensors, and actuators. Here we present a nanocomposite of multiwalled carbon nanotubes (MWCNT) and temperature responsive N-isopropylacrylamide hydrogels. The lower critical solution temperature (LCST) of the nanocomposites was tailored for physiological applications by the addition of varying amounts of acrylamide (AAm). The addition of nanotubes contributed to interesting properties, including tailorability of temperature responsive swelling and mechanical strength of the resultant nanocomposites. The mechanical properties of the nanocomposites were studied over a range of temperatures (25-55 degrees C) to characterize the effect of nanotube addition. A radiofrequency (RF) field of 13.56 MHz was applied to the nanocomposite discs, and the resultant heating was characterized using in thermography. This is the first report on the use of RF to remotely heat MWCNT-hydrogel nanocomposites. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 117: 1813-1819, 2010