화학공학소재연구정보센터
Journal of Applied Polymer Science, Vol.119, No.3, 1659-1666, 2011
Effect of the Inner Wall Cooling Rate on the Structure and Properties of a Polyethylene Pipe Extruded at a High Rotation Speed
A novel rotation extrusion processing system was self-designed to prepare high-performance polyethylene (PE) pipes. In this study, during the extrusion of the PE pipes at a high mandrel rotation speed, compressed air, as a cooling medium, was introduced through their interior to achieve the quick cooling of the inner wall and the effects of the inner wall cooling rate on the microstructure and mechanical properties of the obtained PE pipes were investigated. The experimental results showed that in contrast to conventional extrusion, the molecular orientation deviated from the axial direction under a high mandrel rotation speed and was fixed by the inner wall cooling; with increasing cooling rate, the orientation degree also increased. On the other hand, cooling promoted the augmentation of spherulites. So when the cooling rate reached a certain high point, the effect of cooling on the formation of spherulites was stronger than that on the fixation of the orientation. A much higher cooling rate decreased the orientation degree, which was closely related to the performance of the PE pipe. As a result, there was an optimal cooling rate of the inner wall during the rotation extrusion for better performance of the PE pipe. When the cooling rate was 1.5 degrees C/s, the hoop strength of the PE pipe produced by the novel extrusion method increased from the original 24.1 MPa up to 37.1 MPa without a decrease in the axial strength, and the pipe's crack initiation time increased from 27 to 70 h. VC 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 1659-1666, 2011