Applied Chemistry for Engineering, Vol.22, No.2, 219-223, April, 2011
석탄 연소시 SOx 배출 특성에 관한 연구
A Study on SOx Emission Characteristics in Coal Combustion
E-mail:
초록
SM (India)탄과 Berau, C&A (Austria)탄을 이용하여 SOx 배출 특성을 조사하였다. 실험은 석탄 충진 후 노의 온도를 승온하며 발화점에서 연소되도록 하는 방법과 노의 온도를 일정온도로 유지한 후 석탄을 투입하는 두 가지 방법으로 수행하였다. 실험 결과 연소시 발생되는 SOx는 황 함량에 의해 의존됨을 확인하였다. Berau탄과 C&A탄의 경우 연소성의 증진 즉, 연소온도의 상승과 주입 공기량의 증가, 탄의 입자크기의 감소가 이루어질 경우, SO2의 발생이 증가하는 경향을 나타내었다. 반면, SM탄의 경우에는 반대로 발생되는 SO2의 농도가 감소하는 경향을 나타내었다. 이는 회분 내의 Fe2O3의 높은 함량이 탄 자체의 산화력을 증가시켜 SO2를 SO3로 산화시키는 것으로 나타났다. C&A탄의 경우 SO2 발생 peak가 두 번 발생하였다. 이는 표면에서 내부로의 열 전달속도에 기인하는 것으로 판단된다.
The characteristics of SOx emission were investigated using SM (India) coal and Berau, C&A (Austria) coal. Experiments were performed in two different ways. In the first type of experiment, the temperature in the furnace was increased and the, samples were combusted at the ignition temperature after filling the furnace with coal. The second experimental method was to add the coal to after maintaining a constant temperature. The results demonstrated that SOx emission from coal combustion depended upon the sulfur content. In the case of Berau coal and C&A coal, an enhancement of combustibility which was accomplished by increasing the combustion temperature, an increase in airflow and decrease in particle size of coals tended to increase SO2 generation. Conversely, in the case of SM coal, the concentration of SO2 tended to decrease, because the high contents of Fe2O3 in the ashes increased the oxidation power of coal itself, which oxidized SO2 into SO3. In the case of C&A coal, the SO2 peak was only observed twice. This was thought to be caused by the thermal transfer rate from the surface to the interior of the coal.
- Jang WI, Environmental and Resource Economics Review., 19, 341 (2010)
- Bosch H, Janssen F, Catal. Today., 2, 369 (1988)
- Armor JN, Catal. Today, 26(2), 99 (1995)
- Zelenka P, Cartellieri W, Herzog P, Appl. Catal. B: Environ., 10(1-3), 3 (1996)
- Zel’dovich YB, Acta Phys. Chim., URSS., 21, 577 (1946)
- Fenimore CP, Jones GW, J. Phys. Chem., 61, 654 (1957)
- Fan WD, Lin ZC, Kuang JG, Li YY, Fuel Process. Technol., 91(6), 625 (2010)
- Jung KS, Keener TC, Khang SJ, Fuel Process. Technol., 74(1), 49 (2001)
- Yeo JS, Master Dissertation, Gyeongsang National University, Gyeongsangnam-do, Korea (2002)
- Stromberg AM, Karlsson HT, Presented at SO2/NOx Seminar., 4, 204 (1987)
- Kwon HB, Env. Res. Inst. Kyungnam Univ., 20, 189 (1997)
- Kim SS, Choi JH, Lee HD, Kim JK, Hong SC, J. Korean Ind. Eng. Chem., 20(6), 675 (2009)
- Kim SS, Kang YS, Lee HD, Kim JK, Hong SC, J. Air Waste Manage. Assoc., 61, 254 (2011)
- Manoj SV, Mishra CD, Sharma M, Rani A, Jain R, Bansal SP, Gupta KS, Atmos. Environ., 34, 4479 (2000)
- Kim KY, No SY, Kim YJ, Latest Combustion Engineering, Donghwa technology publishing, Seoul (2003)