화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.17, No.1, 29-35, January, 2011
Bioleaching kinetics of copper from copper smelters dust
E-mail:
The smelting factory of Sarcheshmeh Copper Complex in Iran produces about 50 tons per day of copper dust containing 36% Cu, 22.2% Fe and 12.2% S. The dust is currently recycled to the smelters. Thismethod is not desirable in terms of operation, and energy consumption. A mixed culture of mesophilic bacteria was used to examine the bioleaching of copper from the dust. The effect of various parameters such as pulp density, nutrients, temperature, and the amount of pyrite added to the bioleaching media were examined in the dust bioleaching tests. It was shown that the bacteria contributed effectively in the leaching of copper from the dust. The collected data showed that at pH 1.8 and the pulp density less than 7%, the dissolution of copper followed shrinking core kinetic model and the process was limited by diffusion of lixiviant. With the pulp density of 7%, however, the process showed to be reaction limited.
  1. Acevedo F, EJB., 3(3), 184 (2000)
  2. Rawlings DE, J. Ind. Microbiol. Biotechnol., 20, 268 (1998)
  3. Acevedo F, Gentina JC, J. Biotechnol., 31, 115 (1993)
  4. Bakhtiari F, Zivdar M, Atashi H, Seyed Bagheri SA, Hydrometallurgy., 90, 40 (2008)
  5. Bakhtiari F, Atashi H, Zivdar M, Seyed Bagheri SA, Int. J. Miner. Process., 86, 50 (2008)
  6. Massinaie M, Oliazadeh M, Seyed Bagheri AS, Int. J. Miner. Process., 81(1), 58 (2006)
  7. Seyed Baghery SA, in: Proc. 3rd Natl. Cong. Biotech., Ferdowsi University, Mashhad, Iran, p. 69. (2003)
  8. Rawling DE, Microbial Cell Factories, http://www.microbialcellfactories. com/content/4/1/13. (2005)
  9. Weston JM, Dreisinger DB, Hackl RP, King JA, in: Cooper WC, Dreisinger DB, Dutrizac JE, Hein H, Ugarte G (Eds.), Proc. Copper 95, Int. Conf., Santiago, Chile, p. 377. (1995)
  10. Brierley CL, Briggs AP, in: Mular AL, Halbe DN, Barret DJ (Eds.), Miner. Process. Plant Des., Pract. Control, Society of Mining Engineers, Littleton, Colo,p. 1540. (2002)
  11. Curutchet G, Tedesco P, Donati E, Biotechnol. Lett., 18(12), 1471 (1996)
  12. Vasquez M, Espejo RT, Appl. Environ. Microb., 63, 332 (1997)
  13. Watling HR, Hydrometallurgy., 84, 81 (2006)
  14. Salo-Zieman VLA, Sivonen T, Plumb JJ, Haddad CM, Laukkanen K, Kinnunen PHM, Kaksonen AH, Franzmann PD, Puhakka JA, J. Ind. Microbiol. Biotechnol., 33, 984 (2006)
  15. Xia L, Dai S, Yin C, Hu Y, Liu J, Qiu G, J. Ind. Microbiol. Biotechnol., 36, 845 (2009)
  16. Gomez C, Blazquez ML, Ballester A, Miner. Eng., 12(1), 93 (1999)
  17. Mehta KD, Pandey BD, Premchand, Mat. T. JIM., 40(3), 214 (1999)
  18. Rodriguez Y, Ballester A, Blazquez ML, Gonzalez F, Munoz JA, Hydrometallurgy., 71, 47 (2003)
  19. Mehta KD, Pandey BD, Mankhand TR, Miner. Eng., 16, 523 (2003)
  20. Seyed Bagheri SA, Hassani HR, in: Ciminelli ST, Garcia O (Eds.), Biohydrometallurgy: Fundamentals, Technology and Sustainable Development, Part A, Elsevier, Amsterdam, p. 393. (2001)
  21. Silverman MP, Lundgren DS, FEMS Microbiol. Lett., 77, 642 (1959)
  22. Gericke M, Pinches A, Miner. Eng., 12(8), 893 (1999)
  23. Norris PR, Kelly DP, FEMS Microbiol. Lett., 4, 143 (1978)
  24. Sakaguchi H, Torma AE, Silver M, Appl. Environ. Microb., 31(1), 7 (1976)