Journal of Industrial and Engineering Chemistry, Vol.17, No.2, 316-320, March, 2011
Hydrogenation of succinic acid to γ-butyrolactone (GBL) over palladium catalyst supported on alumina xerogel: Effect of acid density of the catalyst
E-mail:
Mesoporous alumina xerogel (AX) supports prepared by a sol.gel method were calcined at various temperatures to control their acid property. Palladium catalysts supported on mesoporous alumina xerogel (Pd/AX) were then prepared by an impregnation method. The Pd/AX catalysts were characterized by XRD, BET, NH3-TPD, N2 adsorption.desorption isotherm, and H2 chemisorption analyses. Liquid-phase hydrogenation of succinic acid to g-butyrolactone (GBL) over Pd/AX catalyst was carried out in a batch reactor. The effect of acid property of Pd/AX catalyst on the catalytic performance was examined. In the hydrogenation of succinic acid, conversion of succinic acid and yield for GBL showed volcano-shaped curves with respect to calcination temperature of AX support. Selectivity for succinic anhydride (an intermediate product formed by acid catalysis) increased with increasing acid density of Pd/AX catalyst. Correlations between acid density of Pd/AX catalyst and catalytic performance also revealed that conversion of succinic acid and yield for GBL increased with increasing acid density of Pd/AX catalyst. Thus, acid density served as an important factor determining the catalytic performance of Pd/AX in the hydrogenation of succinic acid.
- Jung SM, Godard E, Jung SY, Park KC, Choi JU, J. Mol. Catal. A-Chem., 198(1-2), 297 (2003)
- Budroni G, Corma A, J. Catal., 257(2), 403 (2008)
- Gao CG, Zhao YX, Liu DS, Catal. Lett., 118(1-2), 50 (2007)
- Rudloff M, Stops P, Henkes E, Schmidtke H, Fischer RH, Julius M, Lebku¨ cher R
- Wang Q, Cheng H, Liu R, Hao J, Yu Y, Cai S, Zhao F, Catal. Commun., 10, 592 (2009)
- Delhomme C, Weuster-Botz D, Ku¨ hn FE, Green Chem., 11, 13 (2009)
- Cukalovic A, Stevens CV, Biofuels Bioprod. Bioref., 2, 505 (2008)
- Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A, Chem. Eng. Technol., 31(5), 647 (2008)
- Gopal DV, Srinivas B, Venkata M, Sharma P, Panda L, Kumar PA, Subrahmanyam M, Kumari VD, React. Kinet. Catal. Lett., 83(1), 63 (2004)
- Cho KM, Park S, Seo JG, Youn MH, Baeck SH, Jun KW, Chung JS, Song IK, Appl. Catal. B: Environ., 83(3-4), 195 (2008)
- Walker GS, Pyke DR, Werrett CR, Williams E, Bhattacharya AK, Appl. Surf. Sci., 147, 228 (1999)
- Wang JA, Bokhimi X, Morales A, Novaro O, Lopez T, Gomez R, J. Phys. Chem. B, 103(2), 299 (1999)
- Luque R, Clark JH, Yoshida K, Gai PL, Chem. Commun., 5303 (2009)
- Deshpande RM, Buwa VV, Rode CV, Chaudhari RV, Mills PL, Catal. Commun., 3, 269 (2002)
- Schwartz JAT, US Patent 5,478,952 (1995)
- Jeong H, Kim TH, Kim KI, Cho SH, Fuel Process. Technol., 87(6), 497 (2006)
- Werpy T, Frye JJG, Wang Y, Zacher AH, US Patent 6,670,300 (2002)
- Seo JG, Youn MH, Lee HI, Kim JJ, Yang E, Chung JS, Kim P, Song IK, Chem. Eng. J., 141(1-3), 298 (2008)
- Seo JG, Youn MH, Park S, Chung JS, Song IK, Int. J. Hydrogen Energy., 34, 3755 (2009)
- Cho KM, Park S, Seo JG, Youn MH, Nam I, Baeck SH, Chung JS, Jun KW, Song IK, Chem. Eng. J., 146(2), 307 (2009)
- Webster TJ, Hellenmeyer EL, Price RL, Biomaterials., 26, 953 (2005)
- Seo JG, Youn MH, Park S, Song IK, Int. J. Hydrogen Energy., 33, 7427 (2008)
- Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouque´ rol J, Siemieniewska T, Pure Appl. Chem., 57, 602 (1985)
- Rinaldi R, Schuchardt U, J. Catal., 236(2), 335 (2005)
- Chuah GK, Jaenicke S, Xu TH, Micropor. Mesopor. Mater., 37, 345 (2000)
- Ramos FS, de Farias AMD, Borges LEP, Monteiro JL, Fraga MA, Sousa-Aguiar EF, Appel LG, Catal. Today, 101(1), 39 (2005)
- Seo CW, Jung KD, Lee KY, Yoo KS, Ind. Eng. Chem. Res., 47(17), 6573 (2008)