화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.17, No.2, 316-320, March, 2011
Hydrogenation of succinic acid to γ-butyrolactone (GBL) over palladium catalyst supported on alumina xerogel: Effect of acid density of the catalyst
E-mail:
Mesoporous alumina xerogel (AX) supports prepared by a sol.gel method were calcined at various temperatures to control their acid property. Palladium catalysts supported on mesoporous alumina xerogel (Pd/AX) were then prepared by an impregnation method. The Pd/AX catalysts were characterized by XRD, BET, NH3-TPD, N2 adsorption.desorption isotherm, and H2 chemisorption analyses. Liquid-phase hydrogenation of succinic acid to g-butyrolactone (GBL) over Pd/AX catalyst was carried out in a batch reactor. The effect of acid property of Pd/AX catalyst on the catalytic performance was examined. In the hydrogenation of succinic acid, conversion of succinic acid and yield for GBL showed volcano-shaped curves with respect to calcination temperature of AX support. Selectivity for succinic anhydride (an intermediate product formed by acid catalysis) increased with increasing acid density of Pd/AX catalyst. Correlations between acid density of Pd/AX catalyst and catalytic performance also revealed that conversion of succinic acid and yield for GBL increased with increasing acid density of Pd/AX catalyst. Thus, acid density served as an important factor determining the catalytic performance of Pd/AX in the hydrogenation of succinic acid.
  1. Jung SM, Godard E, Jung SY, Park KC, Choi JU, J. Mol. Catal. A-Chem., 198(1-2), 297 (2003)
  2. Budroni G, Corma A, J. Catal., 257(2), 403 (2008)
  3. Gao CG, Zhao YX, Liu DS, Catal. Lett., 118(1-2), 50 (2007)
  4. Rudloff M, Stops P, Henkes E, Schmidtke H, Fischer RH, Julius M, Lebku¨ cher R
  5. Wang Q, Cheng H, Liu R, Hao J, Yu Y, Cai S, Zhao F, Catal. Commun., 10, 592 (2009)
  6. Delhomme C, Weuster-Botz D, Ku¨ hn FE, Green Chem., 11, 13 (2009)
  7. Cukalovic A, Stevens CV, Biofuels Bioprod. Bioref., 2, 505 (2008)
  8. Bechthold I, Bretz K, Kabasci S, Kopitzky R, Springer A, Chem. Eng. Technol., 31(5), 647 (2008)
  9. Gopal DV, Srinivas B, Venkata M, Sharma P, Panda L, Kumar PA, Subrahmanyam M, Kumari VD, React. Kinet. Catal. Lett., 83(1), 63 (2004)
  10. Cho KM, Park S, Seo JG, Youn MH, Baeck SH, Jun KW, Chung JS, Song IK, Appl. Catal. B: Environ., 83(3-4), 195 (2008)
  11. Walker GS, Pyke DR, Werrett CR, Williams E, Bhattacharya AK, Appl. Surf. Sci., 147, 228 (1999)
  12. Wang JA, Bokhimi X, Morales A, Novaro O, Lopez T, Gomez R, J. Phys. Chem. B, 103(2), 299 (1999)
  13. Luque R, Clark JH, Yoshida K, Gai PL, Chem. Commun., 5303 (2009)
  14. Deshpande RM, Buwa VV, Rode CV, Chaudhari RV, Mills PL, Catal. Commun., 3, 269 (2002)
  15. Schwartz JAT, US Patent 5,478,952 (1995)
  16. Jeong H, Kim TH, Kim KI, Cho SH, Fuel Process. Technol., 87(6), 497 (2006)
  17. Werpy T, Frye JJG, Wang Y, Zacher AH, US Patent 6,670,300 (2002)
  18. Seo JG, Youn MH, Lee HI, Kim JJ, Yang E, Chung JS, Kim P, Song IK, Chem. Eng. J., 141(1-3), 298 (2008)
  19. Seo JG, Youn MH, Park S, Chung JS, Song IK, Int. J. Hydrogen Energy., 34, 3755 (2009)
  20. Cho KM, Park S, Seo JG, Youn MH, Nam I, Baeck SH, Chung JS, Jun KW, Song IK, Chem. Eng. J., 146(2), 307 (2009)
  21. Webster TJ, Hellenmeyer EL, Price RL, Biomaterials., 26, 953 (2005)
  22. Seo JG, Youn MH, Park S, Song IK, Int. J. Hydrogen Energy., 33, 7427 (2008)
  23. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouque´ rol J, Siemieniewska T, Pure Appl. Chem., 57, 602 (1985)
  24. Rinaldi R, Schuchardt U, J. Catal., 236(2), 335 (2005)
  25. Chuah GK, Jaenicke S, Xu TH, Micropor. Mesopor. Mater., 37, 345 (2000)
  26. Ramos FS, de Farias AMD, Borges LEP, Monteiro JL, Fraga MA, Sousa-Aguiar EF, Appel LG, Catal. Today, 101(1), 39 (2005)
  27. Seo CW, Jung KD, Lee KY, Yoo KS, Ind. Eng. Chem. Res., 47(17), 6573 (2008)