화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.345, No.2, 278-285, 2010
On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology
The sol-gel transition of a model dairy system (sodium caseinate solution) which undergoes gelation by acidification has been studied by conventional bulk rheology and particle tracking microrheology, via confocal microscopy. The Brownian diffusion of fluorescent microspheres (0.21, 0.32, 0.5, and 0.89 mu m in diameter) with different surface coatings (polyethylene glycol, carboxylate groups and polystyrene) was used to probe spatial mechanical properties of the gels at the scale of microns. The microrheological results are compared with the macroscopic viscoelastic properties (storage and loss shear modulus) measured in a concentric cylinder rheometer (double gap, at shear strain of 0.005 and frequency of 1 Hz). At pH values close to pl of the caseins, where formation of a protein network, i.e., gelation, became obvious from the confocal microscopy and bulk rheological measurements, all the particles had a tendency to adhere to the network. In spite of this, the microrheological values of the moduli were only slightly lower than the macroscopically determined values and the gel points calculated via both techniques tended to be in good agreement. However, the particle tracking method has higher sensitivity and can detect changes in the structuring of the system before these are registered by the bulk rheological measurement. (c) 2010 Elsevier Inc. All rights reserved.