화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.357, No.2, 440-446, 2011
Synthesis, performance, and modeling of immobilized nano-sized magnetite layer for phosphate removal
A homogeneous layer of nano-sized magnetite particles (<4 nm) was synthesized by impregnation of modified granular activated carbon (GAC) with ferric chloride, for effective removal of phosphate. A proposed mechanism for the modification and formation of magnetite onto the GAC is specified. BET results showed a significant increase in the surface area of the matrix following iron loading, implying that a porous nanomagnetite layer was formed. Batch adsorption experiments revealed high efficiency of phosphate removal, by the newly developed adsorbent, attaining maximum adsorption capacity of 435 mg PO4/g Fe (corresponding to 1.1 mol PO4/mol Fe3O4). It was concluded that initially phosphate was adsorbed by the active sites on the magnetite surface, and then it diffused into the interior pores of the nanomagnetite layer. It was demonstrated that the latter is the rate-determining step for the process. Innovative correlation of the diffusion mechanism with the unique adsorption properties of the synthesized adsorbent is presented. (C) 2011 Elsevier Inc. All rights reserved.