화학공학소재연구정보센터
Journal of Hazardous Materials, Vol.177, No.1-3, 851-855, 2010
Decontamination of industrial wastewater from sugarcane crops by combining solar photo-Fenton and biological treatments
The department of Valle del Cauca is the region with the largest sugarcane production in Colombia. This agricultural activity uses high quantities of herbicides, mainly Diuron and 2,4-Dichlorophenoxyacetic acid. Wastewater generated in the washing process of spray equipment and empty pesticide containers must be treated to keep natural water sources from being polluted with these pesticides when these effluents are disposed off. Conventional biological treatments are not able to remove recalcitrant substances like Diuron and 2,4-Dichlorophenoxyacetic acid; therefore, it is essential to have alternative treatment systems. In recent years, photocatalytic processes have been proven efficient methods in treating polluted water with recalcitrant organic substances. This study sought to evaluate the efficiency of a coupled treatment constituted for a solar photo-Fenton treatment and a biological system like an immobilized biological reactor to treat industrial wastewater containing pesticides (2,4-Dichlorophenoxyacetic acid and Diuron). The mineralization and degradation of pesticides were followed by measuring the dissolved organic carbon and pesticide concentrations. The results revealed that industrial wastewaters with high Diuron and 2,4-Dichlorophenoxyacetic acid concentrations can be successfully treated by a combined solar photo-Fenton-biological system, achieving mineralization of 79.8% in prepared wastewater and 82.5% in real industrial wastewater by using low Fe2+ and H2O2 concentrations. (C) 2010 Elsevier B.V. All rights reserved.