Journal of Hazardous Materials, Vol.182, No.1-3, 10-17, 2010
Effect of the adsorbate (Bromacil) equilibrium concentration in water on its adsorption on powdered activated carbon. Part 3: Competition with natural organic matter
This study (part 3) was carried out to investigate the effect of the natural organic matter (NOM) concentration on Bromacil (pesticide) adsorption on powdered activated carbon (PAC) in the same experimental conditions as in our previous studies (parts 1 and 2). Our previous findings showed that Bromacil adsorption in buffered pure water (pH 7.8) occurred at two types of site. In the presence of NOM (three kinds), we noted a significant reduction in Bromacil adsorption capacities due to the competitive effects exerted by NOM. Highly reactive sites (or pores) in PAC appeared to be blocked by NOM adsorption, as demonstrated by the application of a pseudo-single solute isotherm and of the simplified ideal adsorbed solution theory (lAST), regardless of the initial Bromacil and NOM concentrations. The competing effect of low-molecular weight NOM was found to be greater than the competing effect of high-molecular weight NOM. The pseudo-second order surface-reaction model fitted Bromacil adsorption particularly well, even in the presence of NOM. However, the adsorption-kinetic constant values were found to be independent of the aqueous equilibrium concentration of the target compound, contrary to that observed in pure water. The kinetic data thus confirmed that high reactivity PAC sites were blocked by NOM adsorption. A practical approach concluded this work. (C) 2010 Elsevier B.V. All rights reserved.