Journal of Hazardous Materials, Vol.186, No.1, 280-287, 2011
Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants
Although contaminant removal from water using zero-valent iron nanoparticles (INP) has been investigated for a wide array of chemical pollutants, the majority of studies to date have only examined the reaction of INP in simple single-contaminant systems. Such systems fail to reproduce the complexity of environmental waters and consequently fail as environmental analogues due to numerous competitive reactions not being considered. Consequently there is a high demand for multi-elemental and site-specific studies to advance the design of INP treatment infrastructure. Here INP are investigated using batch reactor systems over a range of pH for the treatment of water containing multi-element contaminants specifically U, Cu, Cr and Mo, selected to provide site-specific analogues for leachants collected from the Lisava mine, near Oravita in South West Romania. Concurrently, a U-only solution was also analysed as a single-system for comparison. Results confirmed the suitability of nano-Fe-0 as a highly efficient reactive material for the aqueous removal of Cr-IV, Cu-II and U-VI over a range of pH applicable to environmental waters. Insufficient Mo-VI removal was observed at pH > 5.7, suggesting that further studies were necessary to successfully deploy INP for the treatment of geochemically complex mine water effluents. Results also indicated that uranium removal in the multi-element system was less than for the comparator containing only uranium. (C) 2010 Elsevier B.V. All rights reserved.