Journal of Materials Science, Vol.45, No.14, 3757-3767, 2010
The effect of temperature on fatigue damage of FRP composites
The present study intends to investigate the effect of temperature on cumulative fatigue damage (D) of laminated fibre-reinforced polymer (FRP) composites. The effect of temperature on fatigue damage is formulated based on Ramkrishnan-Jayaraman and Varvani-Farahani-Shirazi residual stiffness fatigue damage models. The models are further developed to assess the fatigue damage of FRP composites at various temperatures (T). This task is fulfilled by formulating the temperature dependency of Young's modulus (E) and ultimate tensile strength (sigma(ult)) as the inputs of the models. Temperature-dependant parameters of Young's modulus and ultimate tensile strength are found to be in good agreement with the experimentally obtained data when used for unidirectional, cross-ply and quasi-isotropic FRP laminates. The proposed fatigue damage model is evaluated using six sets of fatigue damage data. The proposed temperature-dependent model was also found promising to predict the fatigue damage of unidirectional (UD) and orthogonal woven FRP composites at different temperatures.